Skip to main content
Log in

Numerical modelling of a nonplanar strike slip fault and associated stress distribution in lithosphere asthenosphere system

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

In seismology, the nature of ground deformation in seismically active regions in between two major seismic events has an immense connection with fault movement and other ground damages in those regions. So, understanding of geophysical stress accumulation scenario in this aseismic period and its effects on the faults is a very important aspect for figuring out which faults are most likely to generate further fault movement in future. A computational method during quasi-static, aseismic period in the presence of a strike slip fault and associated fault movement is explained here. A long, surface breaking, non planar strike slip fault is taken to be situated in linearly viscoelastic half space representing the lithosphere asthenosphere system and fault geometry is complex in nature comprising of four interconnected planar parts. Due to some tectonic processes stress accumulates in the vicinity of the fault zone in the aseismic period. Tectonic processes and flow in the Earth’s interior drive deformation of the Earth’s surface that can lead to destructive fault movement when the accumulated stress exceeds the frictional and cohesive forces across the fault. The problem ultimately reduces to a two-dimensional boundary value problem with some discontinuity across the fault plane. The resulting problem is solved with the help of numerical technique, developed for the purpose, based on finite difference scheme. All the results have been depicted graphically with appropriate model parameters. Computational outcomes reveal that fault movement and fault geometry have a significant effect on the stress, strain and displacement components in the localized area of the fault plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aki, K., Richard, P.G.: Quentitative Seismology, 2ed edn. University Science Books, Sausalito (2002)

    Google Scholar 

  • Alex, C., Dan, M.: Models of crustal flow in the India-Asia collision zone. Geophys. J. Int. (2007). https://doi.org/10.1029/2006JB004584

    Article  Google Scholar 

  • Allison, K.L., Dunham, E.M.: Earthquake cycle simulations with rate-and-state friction and power-law viscoelasticity. Tectonophysics (2018). https://doi.org/10.1016/j.tecto.2017.10.021

    Article  Google Scholar 

  • Bercovici, D., Ricard,Y., Richards, M.A.: The relation between mantle dynamics and plate tectonics: a primer. In: Geophysical Monograph Series. AGU, Washington, DC (2000). https://doi.org/10.1029/GM121p0005

  • Bouchez, J.-L., Nicolas, A.: Principles of Rock Deformation and Tectonics. Oxford University Press, Oxford (2021). https://doi.org/10.1093/oso/9780192843876.001.0001

  • Budiansky, B., Amazigo, J.C.: Interaction of fault slip and lithospheric creep. J. Geophys. Res. (1976). https://doi.org/10.1029/JB081i026p04897

    Article  Google Scholar 

  • Cammarano, F.: A short note on the pressure-depth conversion for geophysical interpretation. Geophys. Res. Lett. (2013). https://doi.org/10.1002/grl.50887

    Article  Google Scholar 

  • Cathles, L.M.: The Viscoelasticity of the Earth’s Mantle. Princeton University Press, Princeton (1975)

    Google Scholar 

  • Cattania, C., Werner, M., Marzocchi, W., Hainzl, S., Rhoades, D.A., Gerstenberger, M.C., Liukis, M., Savran, W., Christophersen, A., Helmstetter, A., Jimenez, A., Steacy, S., Jordan, T.H.: The forecasting skill of physics-based seismicity models during the 2010–2012 Canterbury, New Zealand. Earthquake Sequence. Seismol. Res. Lett. (2018). https://doi.org/10.1785/0220180033

    Article  Google Scholar 

  • Chandru, M., Prabha, T., Das, P., Shanthi, V.: A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms. Differ. Equ. Dyn. Syst. (2017). https://doi.org/10.1007/s12591-017-0385-3

    Article  MATH  Google Scholar 

  • Chandru, M., Das, P., Ramos, H.: Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math. Meth. Appl. Sci. (2018). https://doi.org/10.1002/mma.5067

    Article  MathSciNet  MATH  Google Scholar 

  • Chift, P., Lin, J., Barcktiausen, U.: Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Mar. Pet. Geol. 19, 951–970 (2002)

    Article  Google Scholar 

  • Chinnery, M.A.: The deformation of the ground around surface faults. Bull. Seis. Soc. Am. 51, 355–372 (1961)

    Article  Google Scholar 

  • Chinnery, M.A.: The stress changes that accompany strike-slip faulting. Bull. Seis. Soc. Am. 53, 921–932 (1963)

    Article  Google Scholar 

  • Chinnery, M.A.: The strength of the Earth’s crust under horizontal shear stress. J. Geophys. Res. 69, 2085–2089 (1964)

    Article  Google Scholar 

  • Chinnery, M.A., Jovanovich, D.: Effect of Earth layering on earthquake displacement fields. Bull. Seis. Soc. Am. 62, 1969–1982 (1972)

    Article  Google Scholar 

  • Das, P.: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. (2015). https://doi.org/10.1016/j.cam.2015.04.034

    Article  MathSciNet  MATH  Google Scholar 

  • Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. (2018a). https://doi.org/10.1080/10236198.2017.1420792

  • Das, P.: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh. Numer. Algorithm (2018b). https://doi.org/10.1007/s11075-018-0557-4

  • Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer. Math. (2015). https://doi.org/10.1007/s10543-015-0559-8

    Article  MATH  Google Scholar 

  • Das, P., Natesan, S.: Higher-order parameter uniform convergent scheme for robin type reaction-diffusion problems using adaptively generated grid. Int. J. Comput. Methods (2012). https://doi.org/10.1142/S0219876212500521

    Article  MathSciNet  MATH  Google Scholar 

  • Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. CMES 90(6), 463–485 (2013a)

  • Das, P., Natesan, S.: A uniformly convergent hybrid scheme for singularly perturbed system of reaction-diffusion Robin type boundary-value problems. J. Appl. Math. Comput. (2013b). https://doi.org/10.1007/s12190-012-0611-7

  • Das, P., Natesan, S.: Numerical solution of a system of singularly perturbed convection-diffusion boundary-value problems using mesh equidistribution technique. AJMAA 10(1), 1–17, Article 14 (2013c)

  • Das, P., Natesan, S.: Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations. Int. J. Comput. Math. (2014a). https://doi.org/10.1080/00207160.2014.902054

  • Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction–diffusion boundary-value problems. Appl. Math. Comput. (2014b). https://doi.org/10.1016/j.amc.2014.10.023

  • Das, P., Rana, S.: Theoretical prospects of fractional order weakly singular Volterra Integro differential equations and their approximations with convergence analysis. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7369

    Article  MathSciNet  MATH  Google Scholar 

  • Das, P., Vigo-Aguiar, J.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. (2017). https://doi.org/10.1016/j.cam.2017.11.026

    Article  MATH  Google Scholar 

  • Das, P., Rana, S., Vigo-Aguiar, J.: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl. Numer. Math. (2019). https://doi.org/10.1016/j.apnum.2019.08.028

    Article  MATH  Google Scholar 

  • Das, P., Rana, S., Ramos, H.: On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.113116

    Article  MATH  Google Scholar 

  • Das, P., Rana, S., Ramos, H.: Homotopy perturbation method for solving caputo type (2022). https://doi.org/10.1002/cmm4.1047

    Article  Google Scholar 

  • Debnath, S.K., Sen, S.: Movement across a long strike-slip fault and stress accumulation in the lithosphere-asthenosphere system with layered crust model. Int. J. Sci. Innov. Math. Res. 2(9), 770–781 (2014)

    Google Scholar 

  • Debnath, P., Sen, S.: A vertical creeping strike slip fault in a viscoelastic half space under the action of tectonic forces varying with time. IOSR J. Math. (2015). https://doi.org/10.6084/M9.FIGSHARE.1410995.V1

    Article  Google Scholar 

  • Farago, I., Gaspar, G.S.: Numerical methods to the solution of partial differential equations with hydrodynamic applications. Technical University, Budapest (1983)

    Google Scholar 

  • Fowler, A.C.: On the thermal state of earth’s mantle. J. Geophys. 53, 42–51 (1983)

    Google Scholar 

  • Fung, Y.C., Tong, P: Classical and computational solid mechanics. World Scientific Publishing Co. Pte. Ltd., 5 Toh Tuck Link, Singapore (2005)

  • Herrendörfer, R., Gerya, T., van Dinther, Y.: An invariant rate-and state-dependent friction formulation for viscoeastoplastic earthquake cycle simulations. J. Geophys. Res. Solid Earth (2018). https://doi.org/10.1029/2017JB015225

    Article  Google Scholar 

  • Jain, M.K., Iyengar, S.R.K., Jain, R.K.: Computational methods for partial differential equation. Wiley Eastern Limited, 4835/24, Ansari Road, Daryaganj, New Delhi- 110002 (1994)

  • Jiang, J., Erickson, B.A., Lambert, V.R., Ampuero, J.P., Ando, R., Barbot, V., ... & van Dinther,Y.: Community–driven code comparisons for three-dimensional dynamic modeling of sequences of earthquakes and aseismic slip. J. Geophys. Res. Solid Earth (2022). https://doi.org/10.1029/2021JB023519

  • Kaneko, Y., Ampuero, J.P., Lapusta, N.: Spectral-element simulations of long-term fault slip: effect of low-rigidity layers on earthquake-cycle dynamics. J. Geophys. Res. Solid Earth (2011). https://doi.org/10.1029/2011JB008395

    Article  Google Scholar 

  • Karato, S.: Rheology of the earth’s mantle. A historical review. Gondwana Res. 18(1) (2020)

  • Kumar, K., Podila, P.C., Das, P., Ramo, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7358

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu, P., Sarkar (Mondal), S., Rashidi, A., Dutykh, D.: Comparison of ground deformation due to movement of a fault for different types of crack surface. GEM Int. J. Geomath. (2021). https://doi.org/10.1007/s13137-021-00171-5

  • Liu, Y., Sen, M.K.: Advanced finite-difference methods for seismic modeling. Geohorizons (2009/5)

  • Mancini, S., Segou, M., Werner, M.J., Cattania, C.: Improving physics-based aftershock forecasts during the 2016–2017 Central Italy Earthquake Cascade. J. Geophys. Res. Solid Earth (2019). https://doi.org/10.1029/2019JB017874

    Article  Google Scholar 

  • Mao, D.: A treatment of discontinuities in shock-capturing finite difference methods. J. Comput. Phys. 92, 3422–445 (1981). https://doi.org/10.1016/0021-9991(91)90217-9

    Article  MathSciNet  Google Scholar 

  • Mao, D.: A treatment of discontinuities for finite difference methods. J. Comput. Phys. (1992). https://doi.org/10.1016/0021-9991(92)90407-P

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall, S.T., Cooke, M.L., Owen, S.E.: Effects of nonplanar fault topology. Bull. Seismol. Soc. Am. (2008). https://doi.org/10.1785/0120070159

    Article  Google Scholar 

  • Martin, F.L., Wang, R., Roth, F.: The effect of input parameter on visco-elastic models of crustal deformation. Fisica la Tierra. 33(14), 33–54 (2002)

    Google Scholar 

  • Maruyama, T.: Static elastic dislocations in an infinite and semi-infinite medium. Bull. Earthq. Res. Inst. Tokyo Univ. 42, 289–368 (1964)

    Google Scholar 

  • Maruyama, T.: On two dimensional dislocation in an infinite and semi-infinite medium. Bull. Earthq. Res. Inst. Tokyo Univ. 44(3), 811–871 (1966)

    Google Scholar 

  • Mclaskey, G.C., Yamashita, F.: Slow and fast ruptures on a laboratory fault controlled by loading characteristics. J. Geophys. Res. Solid Earth (2017). https://doi.org/10.1002/2016JB013681

    Article  Google Scholar 

  • Michael, A.J.: Viscoelasticity, post seismic slip, fault interactions, and the recurrence of large earthquakes. Bull. Seismol. Soc. Am. (2005). https://doi.org/10.1785/0120030208

    Article  Google Scholar 

  • Moczo, P., Kristek, J., Galis, M., Pazak, P., Balazovjech, M.: The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Physica Slovaca 57(2), 177–406 (2007)

    Google Scholar 

  • Mondal, S.C., Sen, S., Debsarma, S.: A numerical approach for solution of aseismic ground deformation problems. J. Geosci. Geomat. (2018). https://doi.org/10.12691/jgg-6-1-4

  • Mondal, S.C., Sen, S., Debsarma, S.: A mathematical model for analyzing the ground deformation due to a creeping movement across a strike slip fault. GEM Int. J. Geomath. (2019). https://doi.org/10.1007/s13137-019-0129-3

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal, D., Kundu, P., Sarkar, S.: Accumulation of stress and strain due to an infinite strike-slip fault in an elastic layer overlying a viscoelastic half space of standard linear solid (SLS). Pure Appl. Geophys. (2020). https://doi.org/10.1007/s00024-020-02536-7

    Article  Google Scholar 

  • Mukhopadhyay, A., Mukherjee, P.: On stress accumulation in viscoelastic lithosphere. In: Proceedings of the Sixth International Symposium on Earthquake Engineering, vol. 1, pp. 71–76. Roorkee (1978)

  • Mukhopadhyay, A., Sen, S., Pal, B.P.: On stress accumulating in a viscoelastic lithosphere containing a continuously slipping fault. Bull. Soc. Earthq. Tech. 17(1), 1–10 (1980a)

  • Mukhopadhyay, A., Sen, S., Pal, B.P.: On stress accumulation near a continuously slipping fault in a two layer model of lithosphere. Bull. Soc. Earthq. Tech. 4, 29–38 (1980b)

  • Narteau, C.: Formation and evolution of a population of strike-slip faults in a multiscale cellular automaton model. Geophys. J. Int. (2007). https://doi.org/10.1111/j.1365-246X.2006.03213.x

    Article  Google Scholar 

  • Rybicki, K.: The elastic residual field of a very long strike-slip fault in the presence of a discontinuity. Bull. Seis. Soc. Am. 61, 79–92 (1971)

    Article  Google Scholar 

  • Segall, P.: Earthquake and Volcano Deformation. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  • Sen, S., Karmakar, A.: The nature of stress pattern due to a sudden movement across a nonplanar buried strike-slip fault in a layered medium. Eur. J. Math. Sci. (2013). https://ejmathsci.org/index.php/ejmathsci/article/view/144

  • Sen, S., Karmakar, A., Mondal, B.: A nonplanar surface breaking strike slip fault in a viscoelastic half space model of the lithosphere. IOSR J. Math. 2(5), 32–46 (2012)

    Article  Google Scholar 

  • Shakti, D., Mohapatra, J., Das, P., Vigo-Aguiar, J.: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. J. Comput. Appl. Math. (2020). https://doi.org/10.1016/j.cam.2020.113167

    Article  MATH  Google Scholar 

  • Shashkov, M.: Conservative Finite-Difference Methods on General Grids. CRC Press Inc, Boca Raton (1966)

    Google Scholar 

  • Singhroy, V., Molchb, K.: Characterizing and monitoring rockslides from SAR techniques. Adv. Space Res. (2004). https://doi.org/10.1016/S0273-1177(03)00470-8

    Article  Google Scholar 

  • Singleton, D.M., Maloney, J.M., Brothers, D.S., Klotsko, S., Driscoll, N.W., Rockwell, T.K.: Recency of faulting and subsurface architecture of the San Diego bay pull-apart basin, California, USA. Front. Earth Sci. 9, 641346 (2021). https://doi.org/10.3389/feart.2021.641346

    Article  Google Scholar 

  • Soldato, M.D., Confuorto, P., Bianchini, S., Sbarra, P., Casagli, N.: Review of works combining GNSS and InSAR in Europe. Remote Sens (2021). https://doi.org/10.3390/rs13091684

    Article  Google Scholar 

  • Steketee, J.A.: On Voltera’s dislocation in a semi-infinite elastic medium. Can. J. Phys. (1958a). https://doi.org/10.1139/p58-024

  • Steketee, J.A.: Some geophysical applications of the theory of dislocations. Can. J. Phys. (1958b). https://doi.org/10.1139/p58-123

  • Sudarsan, J.: Interior of the earth: crust, mantle and core (2018). https://www.clearias.com/interior-of-the-earth/

  • Tanimura, T., Mori, J.: Realtion between seismicity and strain rate in Japan. AGU Fall Meeting Abstract (2004). https://ui.adsabs.harvard.edu/abs/2004AGUFM.S11A0993T

  • Woessner, J., Hainzl, S., Marzocchi, W., Werner, M.J., Lombardi, A.M., Catalli, F., Enescu, B., Cocco, M., Gerstenberger, M.C., Wiemer, S.: A retrospective comparative forecast test on the 1992 Landers sequence. J. Geophys. Res. (2011). https://doi.org/10.1029/2010JB007846

    Article  Google Scholar 

  • Wu, C.-Y., Huang, T.-Z., Li, L., Lv, X.-G.: Inverses of block tridiagonal matrices and rounding errors. Bull. Malays. Math. Sci. Soc. (2) 34(2), 307–318 (2011)

Download references

Acknowledgements

I would like to convey my sincere gratitude and thanks to the faculty members of the Department of Applied Mathematics of University of Calcutta for their valuable suggestions which help me in formulating the mathematical model and I come to know about so many new things on mathematical modelling. I would also like to extend my thanks to the faculty members of the Computer Laboratory and Library of the Department of Applied Mathematics of the University of Calcutta for their cooperation and support at every stage of preparing this research article. I would like to express my special thanks to Professor Supriyo Mitra, Department of Earth Sciences, IISER, Kolkata for his valuable recommendation which becomes more helpful to conclude different geophysical aspects related to this article.

Funding

The authors received no financial support for this research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chandra Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S.C., Debsarma, S. Numerical modelling of a nonplanar strike slip fault and associated stress distribution in lithosphere asthenosphere system. Int J Geomath 14, 15 (2023). https://doi.org/10.1007/s13137-023-00222-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-023-00222-z

Keywords

Navigation