Skip to main content

Advertisement

Log in

Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

A simulation tool capable of speeding up the calculation for linear poroelasticity problems in heterogeneous porous media is of large practical interest for engineers, in particular, to effectively perform sensitivity analyses, uncertainty quantification, optimization, or control operations on the fluid pressure and bulk deformation fields. Towards this goal, we present here a non-intrusive model reduction framework using proper orthogonal decomposition (POD) and neural networks based on the usual offline-online paradigm. As the conductivity of porous media can be highly heterogeneous and span several orders of magnitude, we utilize the interior penalty discontinuous Galerkin (DG) method as a full order solver to handle discontinuity and ensure local mass conservation during the offline stage. We then use POD as a data compression tool and compare the nested POD technique, in which time and uncertain parameter domains are compressed consecutively, to the classical POD method in which all domains are compressed simultaneously. The neural networks are finally trained to map the set of uncertain parameters, which could correspond to material properties, boundary conditions, or geometric characteristics, to the collection of coefficients calculated from an \(L^2\) projection over the reduced basis. We then perform a non-intrusive evaluation of the neural networks to obtain coefficients corresponding to new values of the uncertain parameters during the online stage. We show that our framework provides reasonable approximations of the DG solution, but it is significantly faster. Moreover, the reduced order framework can capture sharp discontinuities of both displacement and pressure fields resulting from the heterogeneity in the media conductivity, which is generally challenging for intrusive reduced order methods. The sources of error are presented, showing that the nested POD technique is computationally advantageous and still provides comparable accuracy to the classical POD method. We also explore the effect of different choices of the hyperparameters of the neural network on the framework performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahmed, S., Rahman, S., San, O., Rasheed, A., Navon, I.: Memory embedded non-intrusive reduced order modeling of non-ergodic flows. Phys. Fluids 31(12), 126602 (2019)

    Article  Google Scholar 

  • Akinfenwa, O., Jator, S., Yao, N.: Continuous block backward differentiation formula for solving stiff ordinary differential equations. Comput. Math. Appl. 65(7), 996–1005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Alla, A., Kutz, N.: Randomized model order reduction. Adv. Comput. Math. 45(3), 1251–1271 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Alnaes, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS project version 1.5. Arch. Numer. Softw. 3, 100 (2015)

    Google Scholar 

  • Audouze, C., De Vuyst, F., Nair, P.B.: Reduced-order modeling of parameterized pdes using time-space-parameter principal component analysis. Int. J. Numer. Meth. Eng. 80(8), 1025–1057 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Audouze, C., De Vuyst, F., Nair, P.B.: Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations. Numer. Methods Partial Differ. Equ. 29(5), 1587–1628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Baker, R., Yarranton, H., Jensen, J.: Practical Reservoir Engineering and Characterization. Gulf Professional Publishing, Oxford (2015)

    Google Scholar 

  • Balabanov, O., Nouy, A.: Randomized linear algebra for model reduction. Part i: Galerkin methods and error estimation. Adv. Comput. Math. 45(5), 2969–3019 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., May, D., McInnes, L., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.10, Argonne National Laboratory (2018). http://www.mcs.anl.gov/petsc

  • Ballarin, F., D’amario, A., Perotto, S., Rozza, G.: A POD-selective inverse distance weighting method for fast parametrized shape morphing. Int. J. Numer. Meth. Eng. 117(8), 860–884 (2019)

  • Ballarin, F., Faggiano, E., Ippolito, S., Manzoni, A., Quarteroni, A., Rozza, G., Scrofani, R.: Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a pod-galerkin method and a vascular shape parametrization. J. Comput. Phys. 315, 609–628 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ballarin, F., Rozza, G., et al.: RBniCS - reduced order modelling in FEniCS. https://www.rbnicsproject.org/ (2015)

  • Ballarin, F., Rozza, G., et al.: multiphenics - easy prototyping of multiphysics problems in FEniCS (2019). https://mathlab.sissa.it/multiphenics

  • Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  • Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 15, 594–601 (1957)

    Article  MathSciNet  Google Scholar 

  • Borja, R., Choo, J.: Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure. Comput. Methods Appl. Mech. Eng. 309, 653–679 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Bouklas, N., Landis, C., Huang, R.: Effect of solvent diffusion on crack-tip fields and driving force for fracture of hydrogels. J. Appl. Mech. 82(8) (2015)

  • Bouklas, N., Landis, C., Huang, R.: A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. J. Mech. Phys. Solids 79, 21–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. pp. 808–817 (2000)

  • Chen, Z.: Reservoir simulation: mathematical techniques in oil recovery, vol. 77. Siam (2007)

  • Choo, J., Lee, S.: Enriched Galerkin finite elements for coupled poromechanics with local mass conservation. Comput. Methods Appl. Mech. Eng. 341, 311–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Choo, J., Sun, W.: Cracking and damage from crystallization in pores: coupled chemo-hydro-mechanics and phase-field modeling. Comput. Methods Appl. Mech. Eng. 335, 347–349 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Choo, J., White, J., Borja, R.: Hydromechanical modeling of unsaturated flow in double porosity media. Int. J. Geomech. 16(6), D4016002 (2016)

    Article  Google Scholar 

  • Cleary, J., Witten, I.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

    Article  Google Scholar 

  • Coussy, O.: Poromechanics. Wiley, New York (2004)

    MATH  Google Scholar 

  • DeCaria, V., Iliescu, T., Layton, W., McLaughlin, M., Schneier, M.: An artificial compression reduced order model. SIAM J. Numer. Anal. 58(1), 565–589 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Demo, N., Ortali, G., Gustin, G., Rozza, G., Lavini, G.: An efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques. arXiv preprint arXiv:2004.11201 (2020)

  • Deng, Q., Ginting, V., McCaskill, B., Torsu, P.: A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces. J. Comput. Phys. 347, 78–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Devarajan, B., Kapania, R.: Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis. Compos. Struct. 238, 111881 (2020)

    Article  Google Scholar 

  • Du, J., Wong, R.: Application of strain-induced permeability model in a coupled geomechanics-reservoir simulator. J. Can. Pet. Technol. 46(12), 55–61 (2007)

    Article  Google Scholar 

  • Ern, A., Stephansen, A.: A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. pp. 488–510 (2008)

  • Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Gadalla, M., Cianferra, M., Tezzele, M., Stabile, G., Mola, A., Rozza, G.: On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. arXiv preprint arXiv:2006.14428 (2020)

  • Gao, H., Wang, J., Zahr, M.: Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning. Physica D 412, 132614 (2020)

    Article  MathSciNet  Google Scholar 

  • Girfoglio, M., Ballarin, F., Infantino, G., Nicolò, F., Montalto, A., Rozza, G., Scrofani, R., Comisso, M., Musumeci, F.: Non-intrusive PODI-ROM for patient-specific aortic blood flow in presence of a LVAD device. arXiv preprint arXiv:2007.03527 (2020a)

  • Girfoglio, M., Scandurra, L., Ballarin, F., Infantino, G., Nicolò, F., Montalto, A., Rozza, G., Scrofani, R., Comisso, M., Musumeci, F.: A non-intrusive data-driven ROM framework for hemodynamics problems. arXiv preprint arXiv:2010.08139 (2020b)

  • Goh, H., Sheriffdeen, S., Bui-Thanh, T.: Solving forward and inverse problems using autoencoders. arXiv preprint arXiv:1912.04212 (2019)

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  • Guo, M., Haghighat, E.: An energy-based error bound of physics-informed neural network solutions in elasticity. arXiv preprint arXiv:2010.09088 (2020)

  • Haga, J., Osnes, H., Langtangen, H.: On the causes of pressure oscillations in low permeable and low compressible porous media. Int. J. Numer. Anal. Meth. Geomech. 36(12), 1507–1522 (2012)

    Article  Google Scholar 

  • Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R.: A deep learning framework for solution and discovery in solid mechanics: linear elasticity. arXiv preprint arXiv:2003.02751 (2020)

  • Hansen, P.: Discrete inverse problems: insight and algorithms, vol. 7. Siam (2010)

  • Hesthaven, J., Rozza, G., Stamm, B., et al.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  • Hesthaven, J., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363, 55–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Hijazi, S., Ali, S., Stabile, G., Ballarin, F., Rozza, G.: The effort of increasing Reynolds number in projection-based reduced order methods: from laminar to turbulent flows. In: Numerical Methods for Flows, pp. 245–264. Springer (2020)

  • Hijazi, S., Stabile, G., Mola, A., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. p. 109513 (2020)

  • Himpe, C., Leibner, T., Rave, S.: Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40(5), A3267–A3292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hinton, G., Zemel, R.: Autoencoders, minimum description length and helmholtz free energy. Adv. Neural Inf. Process Syst pp. 3–10 (1994)

  • Ibrahim, Z., Othman, K., Suleiman, M.: Implicit r-point block backward differentiation formula for solving first-order stiff ODEs. Appl. Math. Comput. 186(1), 558–565 (2007)

    MathSciNet  MATH  Google Scholar 

  • Jacquier, P., Abdedou, A., Delmas, V., Soulaimani, A.: Non-intrusive reduced-order modeling using uncertainty-aware deep neural networks and proper orthogonal decomposition: application to flood modeling. arXiv preprint arXiv:2005.13506 (2020)

  • Jaeger, J., Cook, N.G., Zimmerman, R.: Fundamentals of Rock Mechanics. Wiley, New York (2009)

    Google Scholar 

  • Jia, P., Cheng, L., Huang, S., Xu, Z., Xue, Y., Cao, R., Ding, G.: A comprehensive model combining Laplace-transform finite-difference and boundary-element method for the flow behavior of a two-zone system with discrete fracture network. J. Hydrol. 551, 453–469 (2017)

    Article  Google Scholar 

  • Juanes, R., Jha, B., Hager, B., Shaw, J., Plesch, A., Astiz, L., Dieterich, J., Frohlich, C.: Were the May 2012 Emilia-Romagna earthquakes induced? A coupled flow-geomechanics modeling assessment. Geophys. Res. Lett. 43(13), 6891–6897 (2016)

    Article  Google Scholar 

  • Kadeethum, T., Jørgensen, T., Nick, H.: Physics-informed neural networks for solving inverse problems of nonlinear Biot’s equations: batch training. In: 54th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, Golden, CO, USA (2020)

  • Kadeethum, T., Jørgensen, T., Nick, H.: Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations. PLoS ONE 15(5), e0232683 (2020)

  • Kadeethum, T., Lee, S., Ballarin, F., Choo, J., Nick, H.: A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media. arXiv preprint arXiv:2010.04994 (2020)

  • Kadeethum, T., Lee, S., Nick, H.: Finite element solvers for biot’s poroelasticity equations in porous media. Math. Geosci. 52, 977–1015 (2020)

  • Kadeethum, T., Nick, H., Lee, S.: Comparison of two-and three-field formulation discretizations for flow and solid deformation in heterogeneous porous media. In: 20th Annual Conference of the International Association for Mathematical Geosciences. PA, USA (2019)

  • Kadeethum, T., Nick, H., Lee, S., Ballarin, F.: Enriched Galerkin discretization for modeling poroelasticity and permeability alteration in heterogeneous porous media. J. Comput. Phys. p. 110030 (2021)

  • Kadeethum, T., Nick, H., Lee, S., Richardson, C., Salimzadeh, S., Ballarin, F.: A novel enriched Galerkin method for modelling coupled flow and mechanical deformation in heterogeneous porous media. In: 53rd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, New York, NY, USA (2019)

  • Kadeethum, T., Salimzadeh, S., Nick, H.: Investigation on the productivity behaviour in deformable heterogeneous fractured reservoirs. In: 2018 International Symposium on Energy Geotechnics (2018)

  • Kadeethum, T., Salimzadeh, S., Nick, H.: An investigation of hydromechanical effect on well productivity in fractured porous media using full factorial experimental design. J. Petrol. Sci. Eng. 181, 106233 (2019)

    Article  Google Scholar 

  • Kadeethum, T., Salimzadeh, S., Nick, H.: Well productivity evaluation in deformable single-fracture media. Geothermics 87 (2020)

  • Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200(13–16), 1591–1606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  • Kumar, S., Oyarzua, R., Ruiz-Baier, R., Sandilya, R.: Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM Math. Modell. Numer. Anal. 54(1), 273–299 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., Kadeethum, T., Nick, H.: Choice of interior penalty coefficient for interior penalty discontinuous Galerkin method for Biot’s system by employing machine learning (2019). Submitted

  • Lee, S., Mikelic, A., Wheeler, M., Wick, T.: Phase-field modeling of two phase fluid filled fractures in a poroelastic medium. Multiscale Model. Simul. 16(4), 1542–1580 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., Wheeler, M., Wick, T.: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Methods Appl. Mech. Eng. 305, 111–132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, B., Bouklas, N.: A variational phase-field model for brittle fracture in polydisperse elastomer networks. Int. J. Solids Struct. 182, 193–204 (2020)

    Article  Google Scholar 

  • Liang, Y., Lee, H., Lim, S., Lin, W., Lee, K., Wu, C.: Proper orthogonal decomposition and its applications-part i: Theory. J. Sound Vib. 252(3), 527–544 (2002)

    Article  MATH  Google Scholar 

  • Lipnikov, K., Shashkov, M., Yotov, I.: Local flux mimetic finite difference methods. Numer. Math. 112(1), 115–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Tavener, S., Wang, Z.: Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J. Sci. Comput. 40(5), B1229–B1252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, R., Wheeler, M., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Eng. 198(41–44), 3499–3510 (2009)

    Article  MATH  Google Scholar 

  • Lumley, J.: The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation (1967)

  • Ma, Z., Pan, W.: Data-driven nonintrusive reduced order modeling for dynamical systems with moving boundaries using gaussian process regression. Comput. Methods Appl. Mech. Eng. 373, 113495 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Macminn, C., Dufresne, E., Wettlaufer, J.: Large deformations of a soft porous material. Phys. Rev. Appl. 5(4), 1–30 (2016)

    Article  Google Scholar 

  • Matthai, S., Nick, H.: Upscaling two-phase flow in naturally fractured reservoirs. AAPG Bull. 93(11), 1621–1632 (2009)

    Article  Google Scholar 

  • Mignolet, M., Przekop, A., Rizzi, S., Spottswood, M.: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J. Sound Vib. 332(10), 2437–2460 (2013)

    Article  Google Scholar 

  • Mikelic, A., Wheeler, M.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17(3), 455–461 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Murad, M., Borges, M., Obregon, J., Correa, M.: A new locally conservative numerical method for two-phase flow in heterogeneous poroelastic media. Comput. Geotech. 48, 192–207 (2013)

    Article  Google Scholar 

  • Müller, S., Schüler, L.: GeoStat-Framework/GSTools. Zenodo (2020). https://geostat-framework.readthedocs.io/

  • Nick, H., Raoof, A., Centler, F., Thullner, M., Regnier, P.: Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive henry problem. J. Contam. Hydrol. 145, 90–104 (2013)

    Article  Google Scholar 

  • Nicolaides, C., Jha, B., Cueto-Felgueroso, L., Juanes, R.: Impact of viscous fingering and permeability heterogeneity on fluid mixing in porous media. Water Resour. Res. 51(4), 2634–2647 (2015)

    Article  Google Scholar 

  • Nordbotten, J.: Cell-centered finite volume discretizations for deformable porous media. Int. J. Numer. Meth. Eng. 100(6), 399–418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Malley, D., Golden, J., Vesselinov, V.: Learning to regularize with a variational autoencoder for hydrologic inverse analysis. arXiv preprint arXiv:1906.02401 (2019)

  • Ortali, G., Demo, N., Rozza, G.: Gaussian process approach within a data-driven POD framework for fluid dynamics engineering problems. arXiv preprint arXiv:2012.01989 (2020)

  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  • Paul-Dubois-Taine, A., Amsallem, D.: An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. Int. J. Numer. Meth. Eng. 102(5), 1262–1292 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Pawar, S., Rahman, S., Vaddireddy, H., San, O., Rasheed, A., Vedula, P.: A deep learning enabler for nonintrusive reduced order modeling of fluid flows. Phys. Fluids 31(8), 085101 (2019)

    Article  Google Scholar 

  • Phillips, P., Wheeler, M.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11(2), 131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, P., Wheeler, M.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, T., Heaney, C., Smith, P., Pain, C.: An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion. arXiv preprint arXiv:2008.10532 (2020)

  • Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11(4), 761–767 (1998)

    Article  Google Scholar 

  • Prechelt, L.: Early stopping-but when? In: Neural Networks: Tricks of the trade, pp. 55–69. Springer (1998)

  • Rapún, M.L., Vega, J.M.: Reduced order models based on local pod plus Galerkin projection. J. Comput. Phys. 229(8), 3046–3063 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Riviere, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  • Salimzadeh, S., Hagerup, E., Kadeethum, T., Nick, H.: The effect of stress distribution on the shape and direction of hydraulic fractures in layered media. Eng. Fract. Mech. 215, 151–163 (2019)

    Article  Google Scholar 

  • San, O., Maulik, R., Ahmed, M.: An artificial neural network framework for reduced order modeling of transient flows. Commun. Nonlinear Sci. Numer. Simul. 77, 271–287 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Schilders, W.: Introduction to model order reduction. In: Model order reduction: Theory, research aspects and applications, pp. 3–32. Springer (2008)

  • Schilders, W., Van der Vorst, H., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications, vol. 13. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  • Sirovich, L.: Turbulence and the dynamics of coherent structures. iii. Dynamics and scaling. Q. Appl. Math. 45(3), 583–590 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Sokolova, I., Bastisya, M., Hajibeygi, H.: Multiscale finite volume method for finite-volume-based simulation of poroelasticity. J. Comput. Phys. 379, 309–324 (2019)

    Article  MathSciNet  Google Scholar 

  • Stabile, G., Hijazi, S., Mola, A., Lorenzi, S., Rozza, G.: POD-Galerkin reduced order methods for CFD using finite volume discretisation: vortex shedding around a circular cylinder. Commun. Appl. Ind. Math. 8(1), 210–236 (2017)

    MathSciNet  MATH  Google Scholar 

  • Strazzullo, M., Ballarin, F., Mosetti, R., Rozza, G.: Model reduction for parametrized optimal control problems in environmental marine sciences and engineering. SIAM J. Sci. Comput. 40(4), B1055–B1079 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Terzaghi, K.: Theoretical Soil Mechanics. Chapman And Hall Limited, London (1951)

    Google Scholar 

  • Vasile, M., Minisci, E., Quagliarella, D., Guénot, M., Lepot, I., Sainvitu, C., Goblet, J., Coelho, R.: Adaptive sampling strategies for non-intrusive pod-based surrogates. Eng. Comput. (2013)

  • Venturi, L., Ballarin, F., Rozza, G.: A weighted POD method for elliptic PDEs with random inputs. J. Sci. Comput. 81(1), 136–153 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Vinje, V., Brucker, J., Rognes, M., Mardal, K., Haughton, V.: Fluid dynamics in syringomyelia cavities: effects of heart rate, CSF velocity, CSF velocity waveform and craniovertebral decompression. Neuroradiol. J. p. 1971400918795482 (2018)

  • Wang, H.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, New Jersy (2017)

    Google Scholar 

  • Wang, Q., Hesthaven, J., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Q., Ripamonti, N., Hesthaven, J.: Recurrent neural network closure of parametric pod-galerkin reduced-order models based on the mori-zwanzig formalism. J. Comput. Phys. 109402 (2020)

  • Wang, Z., Xiao, D., Fang, F., Govindan, R., Pain, C., Guo, Y.: Model identification of reduced order fluid dynamics systems using deep learning. Int. J. Numer. Meth. Fluids 86(4), 255–268 (2018)

    Article  MathSciNet  Google Scholar 

  • Wheeler, M., Xue, G., Yotov, I.: Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18(1), 57–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  • Xiao, D., Fang, F., Buchan, A., Pain, C., Navon, I., Muggeridge, A.: Non-intrusive reduced order modelling of the Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 293, 522–541 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, D., Fang, F., Pain, C., Hu, G.: Non-intrusive reduced-order modelling of the Navier-Stokes equations based on rbf interpolation. Int. J. Numer. Meth. Fluids 79(11), 580–595 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, D., Heaney, C., Fang, F., Mottet, L., Hu, R., Bistrian, D., Aristodemou, E., Navon, I., Pain, C.: A domain decomposition non-intrusive reduced order model for turbulent flows. Comput. Fluids 182, 15–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, J., Yan, C., Guo, M.: Non-intrusive reduced-order modeling for fluid problems: a brief review. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 233(16), 5896–5912 (2019)

    Article  Google Scholar 

  • Yu, Y., Bouklas, N., Landis, C., Huang, R.: Poroelastic effects on the time-and rate-dependent fracture of polymer gels. J. Appl. Mech. 87(3) (2020)

  • Zdunek, A., Rachowicz, W., Eriksson, T.: A five-field finite element formulation for nearly inextensible and nearly incompressible finite hyperelasticity. Comput. Math. Appl. 72(1), 25–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, Y., Choo, J.: Stabilized material point methods for coupled large deformation and fluid flow in porous materials. Comput. Methods Appl. Mech. Eng. 362, 112742 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Zinn, B., Harvey, C.: When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate gaussian hydraulic conductivity fields. Water Resour. Res. 39(3) (2003)

Download references

Acknowledgements

The computational results in this work have been produced by the RBniCS project Ballarin et al. (2015) (a reduced order modeling library built upon FEniCS Alnaes et al. (2015)), the multiphenics library Ballarin et al. (2019) (an extension of FEniCS for multiphysics problems), and PyTorch Paszke et al. (2019). We acknowledge the developers of and contributors to these libraries. FB thanks Horizon 2020 Program for Grant H2020 ERC CoG 2015 AROMA-CFD project 681447 (PI Prof. Gianluigi Rozza) that supported the development of RBniCS and multiphenics, and the project “Numerical modeling of flows in porous media” organized at the Catholic University of the Sacred Heart. NB acknowledges startup support from the Sibley School of Mechanical and Aerospace Engineering, Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ballarin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Finite element discretization and solution

We use the discontinuous Galerkin solver from Kadeethum et al. (2019), Kadeethum et al. (2019), Lee et al. (2019), Kadeethum et al. (2020), Kadeethum et al. (2021), and we briefly revisit the discretization in this section. We begin by introducing the necessary notation. Let \({\mathcal {T}}_h\) be a shape-regular triangulation obtained by a partition of \(\varOmega \) into d-simplices (segments in \(d=1\), triangles in \(d=2\), tetrahedra in \(d=3\)). For each cell \(T \in {\mathcal {T}}_h\), we denote by \(h_{T}\) the diameter of T, and we set \(h=\max _{T \in {\mathcal {T}}_h} h_{T}\) and \(h_{l}=\min _{T \in {\mathcal {T}}_h} h_{T}\). We further denote by \({\mathcal {E}}_h\) the set of all facets (i.e., \(d - 1\) dimensional entities connected to at least a \(T \in {\mathcal {T}}_h\)) and by \({\mathcal {E}}_h^{I}\) and \({\mathcal {E}}_h^{\partial }\) the collection of all interior and boundary facets, respectively. The boundary set \({\mathcal {E}}_h^{\partial }\) is decomposed into two disjoint subsets associated with the Dirichlet boundary facets, and the Neumann boundary facets for each of Eqs. (7) and (12). In particular, \({\mathcal {E}}_{h}^{D,u}\) and \({\mathcal {E}}_{h}^{N,u}\) correspond to the facets on \(\partial \varOmega _u\) and \(\partial \varOmega _{tr}\), respectively, for Eq. (7). On the other hand, for Eq. (12), \({\mathcal {E}}_{h}^{D,m}\) and \({\mathcal {E}}_{h}^{N,m}\) conform to \(\partial \varOmega _p\) and \(\partial \varOmega _{q}\), respectively.

We also define

$$\begin{aligned} e = \partial T^{+}\cap \partial T^{-}, \ \ e \in {\mathcal {E}}_h^I, \end{aligned}$$

where \(T^{+}\) and \(T^{-}\) are the two neighboring elements to e. We denote by \(h_e\) the characteristic length of e calculated as

$$\begin{aligned} h_{e} :=\frac{{\text {meas}}\left( T^{+}\right) +{\text {meas}}\left( T^{-}\right) }{2 {\text {meas}}(e)}, \end{aligned}$$
(29)

depending on the argument, meas(\(\cdot \)) represents the measure of a cell or of a facet.

Let \({\mathbf {n}}^{+}\) and \({\mathbf {n}}^{-}\) be the outward unit normal vectors to \(\partial T^+\) and \(\partial T^-\), respectively. For any given scalar function \(\zeta : {\mathcal {T}}_h \rightarrow {\mathbb {R}}\) and vector function \(\varvec{\tau }: {\mathcal {T}}_h \rightarrow {\mathbb {R}}^d\), we denote by \(\zeta ^{\pm }\) and \(\varvec{\tau }^{\pm }\) the restrictions of \(\zeta \) and \(\varvec{\tau }\) to \(T^\pm \), respectively. Subsequently, we define the weighted average operator as

$$\begin{aligned} \{\zeta \}_{\delta e}=\delta _{e} \zeta ^{+}+\left( 1-\delta _{e}\right) \zeta ^{-}, \ \text { on } e \in {\mathcal {E}}_h^I, \end{aligned}$$
(30)

and

$$\begin{aligned} \{\varvec{\tau }\}_{\delta e}=\delta _{e} \varvec{\tau }^{+}+\left( 1-\delta _{e}\right) \varvec{\tau }^{-}, \ \text { on } e \in {\mathcal {E}}_h^I, \end{aligned}$$
(31)

where \(\delta _{e}\) is calculated by Ern et al. (2009), Ern and Stephansen (2008):

$$\begin{aligned} \delta _{e} :=\frac{{k}^{-}_e}{{k}^{+}_e+{k}^{-}_e}. \end{aligned}$$
(32)

Here,

$$\begin{aligned} {k}^{+}_e :=\left( {\mathbf {n}}^{+}\right) ^{\intercal } \cdot \varvec{k}^{+} {\mathbf {n}}^{+}, \ \text { and } {k}^{-}_e :=\left( {\mathbf {n}}^{-}\right) ^{\intercal } \cdot \varvec{k}^{-} {\mathbf {n}}^{-}, \end{aligned}$$
(33)

where \({k_e}\) is a harmonic average of \(k^{+}_e\) and \({k}^{-}_e\) which reads

$$\begin{aligned} {k_{e}}:= \frac{2{k}^{+}_e {k}^{-}_e}{{k}^{+}_e+{k}^{-}_e}, \end{aligned}$$
(34)

and \(\varvec{k}\) is defined as in Eq. (11).

The jump across an interior edge will be defined as

$$\begin{aligned} \llbracket \zeta \rrbracket = \zeta ^+{\mathbf {n}}^++\zeta ^-{\mathbf {n}}^- \quad \text{ and } \quad \llbracket \tau \rrbracket = \varvec{\tau }^+\cdot {\mathbf {n}}^+ + \varvec{\tau }^-\cdot {\mathbf {n}}^- \quad \text{ on } e\in {\mathcal {E}}_h^I. \end{aligned}$$

Finally, for \(e \in {\mathcal {E}}^{\partial }_h\), we set \(\{\zeta \}_{\delta _e} := \zeta \) and \(\{{\varvec{\tau }}\}_{\delta _e} := \varvec{\tau }\) for what concerns the definition of the weighted average operator, and \(\llbracket \zeta \rrbracket := \zeta {\mathbf {n}}\) and \(\llbracket \varvec{\tau } \rrbracket := \varvec{\tau } \cdot {\mathbf {n}}\) as definition of the jump operator.

1.1 Temporal discretization

We adapt the Biot’s system solver from Kadeethum et al. (2021), Kadeethum et al. (2020). The time domain, \({\mathbb {T}} = \left( 0, \mathrm {T}\right] \), is partitioned into \(N^t\) open intervals such that, \(0=: t^{0}<t^{1}<\cdots <t^{ N^t} := \mathrm {T}\). The length of the interval, \(\varDelta t^n\), is defined as \(\varDelta t^n=t^{n}-t^{n-1}\) where n represents the current time step. \(\varDelta t^0\) is an initial \(\varDelta t\), which is defined as \(t^{1}-t^{0}\), while the other time steps, \(\varDelta t^n\), are calculated as follows

$$\begin{aligned} \varDelta t^n := {\left\{ \begin{array}{ll} \varDelta t_{mult}\times \varDelta t^{n-1} &{} \text {if} \ \varDelta t^n \le \varDelta t_{max} \ \\ \varDelta t_{max} &{} \text {if} \ \varDelta t^n > \varDelta t_{max}, \end{array}\right. } \end{aligned}$$
(35)

where \(\varDelta t_{mult}\) is a positive constant multiplier, and \(\varDelta t_{max}\) is the maximum allowable time step. Then, let \(\varphi (\cdot , t)\) be a scalar function and \(\varphi ^{n}\) be its approximation at time \(t^n\), i.e. \(\varphi ^{n} \approx \varphi \left( t^{n}\right) \). We employ the following backward differentiation formula for time discretization of all primary variables (Ibrahim et al. 2007; Akinfenwa et al. 2013; Lee et al. 2018; Kadeethum et al. 2020)

$$\begin{aligned} \mathrm {BDF}_{1}\left( \varphi ^{n}\right) := \frac{1}{\varDelta t^n}\left( \varphi ^{n}-\varphi ^{n-1}\right) . \end{aligned}$$
(36)

1.2 Full discretization

Following (Liu et al. 2009; Kadeethum et al. 2021, 2020, 2019), in this study, the displacement field is approximated by the classical continuous Galerkin method (CG) method, and the fluid pressure field is discretized by discontinuous Galerkin (DG) method to ensure local mass conservation and provide a better flux approximation (Kadeethum et al. 2021, 2020).

We begin with defining the finite element space for the continuous Galerkin (CG) method for a vector-valued function

$$\begin{aligned} {\mathcal {U}}_{h}^{\mathrm {CG}_{k}}\left( {\mathcal {T}}_{h}\right) :=\left\{ \varvec{\psi }_{\varvec{u}} \in {\mathbb {C}}^{0}(\varOmega {; {\mathbb {R}}^d}) :\left. \varvec{\psi }_{\varvec{u}}\right| _{T} \in {\mathbb {Q}}_{k}(T{; {\mathbb {R}}^d}), \forall T \in {\mathcal {T}}_{h}\right\} , \end{aligned}$$
(37)

where k indicates the order of polynomial that can be approximated in this space, \({\mathbb {C}}^0(\varOmega {; {\mathbb {R}}^d})\) denotes the space of vector-valued piece-wise continuous polynomials, \({\mathbb {Q}}_{k}(T{; {\mathbb {R}}^d})\) is the space of polynomials of degree at most k over each element T, and \({\mathbb {R}}\) is a set of real numbers. We will denote in the following by \(N_h^u\) the dimension of the space \({\mathcal {U}}_{h}^{\mathrm {CG}_{k}}\left( {\mathcal {T}}_{h}\right) \), i.e. the number of degrees of freedom for the displacement approximation.

Next, the DG space for scalar-valued functions is defined as

$$\begin{aligned} {\mathcal {P}}_{h}^{\mathrm {DG}_{k}}\left( {\mathcal {T}}_{h}\right) :=\left\{ \psi _p \in L^{2}(\varOmega ) :\left. \psi _p\right| _{T} \in {\mathbb {Q}}_{k}(T), \forall T \in {\mathcal {T}}_{h}\right\} , \end{aligned}$$
(38)

where \(L^{2}(\varOmega )\) is the space of square integrable functions. This non conforming finite element space allows us to consider discontinuous coefficients and preserves the local mass conservation. We will denote in the following by \(N_h^p\) the dimension of \({\mathcal {P}}_{h}^{\mathrm {DG}_{k}}\left( {\mathcal {T}}_{h}\right) \).

We seek the approximated displacement (\(\varvec{u}_{h}\)) and pressure (\({p}_{h}\)) solutions by discretizing the linear momentum balance equation Eq. (7) employing the above CG finite element spaces for \(\varvec{u}_{h}\) and the DG spaces for \({p}_{h}\). The fully discretized linear momentum balance equation Eq. (7) can be defined using the following forms

$$\begin{aligned} {\mathcal {A}}_u\left( (\varvec{u}_{h}^{n}, p_{h}^{n}), \varvec{\psi }_{\varvec{u}} \right) = {\mathcal {L}}_u\left( \varvec{\psi }_{\varvec{u}} \right) , \quad \forall \varvec{\psi }_{\varvec{u}} \in {\mathcal {U}}_{h}^{\mathrm {CG}_{2}}\left( {\mathcal {T}}_{h}\right) , \end{aligned}$$
(39)

at each time step \(t^n\), where

$$\begin{aligned} {\mathcal {A}}_u\left( (\varvec{u}_{h}^{n}, p_{h}^{n}), \varvec{\psi }_{\varvec{u}} \right) = \sum _{T \in {\mathcal {T}}_{h}} \int _{T} \varvec{\sigma }^{\prime }\left( \varvec{u}_{h}\right) : \nabla ^{s} \varvec{\psi }_{\varvec{u}} \, d V - \sum _{T \in {\mathcal {T}}_{h}} \int _{T} \alpha p_{h} {\mathbf {I}} : \nabla ^{s} \varvec{\psi }_{\varvec{u}} \, d V,\nonumber \\ \end{aligned}$$
(40)

and

$$\begin{aligned} {\mathcal {L}}_u\left( \varvec{\psi }_{\varvec{u}} \right) =\sum _{T \in {\mathcal {T}}_{h}} \int _{T} \varvec{f} \varvec{\psi }_{\varvec{u}} \, d V+\sum _{e \in {\mathcal {E}}_{h}^{N}} \int _{e} \varvec{t_D} \varvec{\psi }_{\varvec{u}} \, d S. \end{aligned}$$
(41)

Here, \(\nabla ^{s}\) is a symmetric gradient operator. We then discretize Eq. (12) as

$$\begin{aligned} {\mathcal {A}}_p\left( (\varvec{u}_{h}^{n}, p_{h}^{n}), \psi _p \right) = {\mathcal {L}}_p\left( \psi _p \right) , \quad \forall \psi _p \in {\mathcal {P}}_{h}^{\mathrm {DG}_{1}}\left( {\mathcal {T}}_{h}\right) , \end{aligned}$$
(42)

for each time step \(t^n\), where

$$\begin{aligned} {\mathcal {A}}_p\left( (\varvec{u}_{h}^{n}, p_{h}^{n}), \psi _p \right)= & {} \sum _{T \in {\mathcal {T}}_{h}} \int _{T} \frac{\alpha }{K} \mathrm {BDF}_1(\sigma _{v}) \psi _p \, d V\nonumber \\&+ \sum _{T \in {\mathcal {T}}_{h}} \int _{T} \left( \frac{1}{M}+\frac{\alpha ^{2}}{K}\right) \mathrm {BDF}_{1}\left( p_{h}^{n} \right) \psi _p \, d V \nonumber \\&+ \sum _{T \in {\mathcal {T}}_{h}} \int _{T} \varvec{\kappa } \nabla p_{h}^n \cdot \nabla \psi _{p} \, d V - \sum _{e \in {\mathcal {E}}_h^{I} \cup {\mathcal {E}}_{h}^{D}} \int _{e}\left\{ \varvec{\kappa }\nabla p_{h}^n\right\} _{\delta _{e}} \cdot \llbracket \psi _p \rrbracket \, d S \nonumber \\&- \sum _{e \in {\mathcal {E}}_h^{I} \cup {\mathcal {E}}_{h}^{D}} \int _{e}\left\{ \varvec{\kappa } \nabla \psi _{p}\right\} _{\delta _{e}} \cdot \llbracket p_h^n \rrbracket \, d S \nonumber \\&+ \sum _{e \in {\mathcal {E}}_h^{I} \cup {\mathcal {E}}_{h}^{D}} \int _{e} \frac{\beta }{h_{e}} {\varvec{\kappa }}_{{e}} \llbracket p_h^n \rrbracket \cdot \llbracket \psi _p \rrbracket \, d S, \end{aligned}$$
(43)

and

$$\begin{aligned} \begin{aligned} {\mathcal {L}}_p\left( \psi _p \right)&:= \sum _{T \in {\mathcal {T}}_{h}} \int _{T} g \psi _{p} \, d V+ \sum _{e \in {\mathcal {E}}_{h}^{N}} \int _{e} q_{D} \psi _{p} \, d S \\&\qquad -\sum _{e \in {\mathcal {E}}_{h}^{D}} \int _{e} \varvec{\kappa } \nabla \psi _{p} \cdot p_{D} {\mathbf {n}} \, d S + \sum _{e \in {\mathcal {E}}_{h}^{D}} \int _{e} \frac{\beta }{h_{e}} {\varvec{\kappa }}_{{e}} \llbracket \psi _p \rrbracket \cdot p_D {\mathbf {n}} \, d S. \end{aligned} \end{aligned}$$
(44)

More details regarding block structure and solver algorithm could be found in Kadeethum et al. (2020, 2021).

Appendix B: Intrusive reduced order model by Galerkin projection

The starting point of the intrusive methodology based on a Galerkin projection is the end of Sect. 3.3. Let \(\left\{ {\mathbf {w}}_{1}, \cdots , {\mathbf {w}}_{\mathrm {N}}\right\} \) denote the basis functions spanning \({\mathcal {U}}_{\mathrm {N}}\). Similarly, let \(\left\{ q_{1}, \cdots , q_{\mathrm {N}}\right\} \) denote the basis functions spanning \({\mathcal {P}}_\mathrm {N}\).

The offline phase of the intrusive method does not require to carry out either the \(L^2\) projection step as described in Sect. 3.4, or training the ANN as described in 3.5. Then, during the online phase (which effectively replaces the non-intrusive choice in Sect. 3.6), one carries out a time stepping as follows: given \({\widehat{\theta }}_k^u(t^0, \varvec{\mu })\), \({\widehat{\theta }}_k^p(t^0, \varvec{\mu })\), for every time step \(t^n\) find reduced coefficients \({\widehat{\theta }}_k^u(t^n, \varvec{\mu })\), \({\widehat{\theta }}_k^p(t^n, \varvec{\mu })\) such that the reconstructed solutions

$$\begin{aligned} \begin{aligned} \widehat{\varvec{u}}_{h}^n := \widehat{\varvec{u}}_{h}\left( \cdot ; t^n, \varvec{\mu }\right) = \sum _{k=1}^{\mathrm {N}} {\widehat{\theta }}_k^u(t^n, \varvec{\mu }) {\mathbf {w}}_{k},\\ {\widehat{p}}_{h}^n := {\widehat{p}}_{h}\left( \cdot ; t^n, \varvec{\mu }\right) = \sum _{k=1}^{\mathrm {N}} {\widehat{\theta }}_k^p(t^n, \varvec{\mu }) q_{k}, \end{aligned} \end{aligned}$$

are solution to the following Galerkin method

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {A}}_u\left( (\widehat{\varvec{u}}_{h}^{n}, {\widehat{p}}_{h}^{n}), {\mathbf {w}}_k \right) = {\mathcal {L}}_u\left( {\mathbf {w}}_k \right) , \quad \forall k = 1, \hdots , N,\\ {\mathcal {A}}_p\left( (\widehat{\varvec{u}}_{h}^{n}, {\widehat{p}}_{h}^{n}), q_k \right) = {\mathcal {L}}_p\left( q_k \right) , \quad \forall k = 1, \hdots , N. \end{array}\right. } \end{aligned}$$

More details on efficient assembly of such system by precomputation of time and parameter independent tensors can be found in reduced basis textbooks, see, e.g., Hesthaven et al. (2016).

Appendix C: Comparison with global basis for all unknowns

Coupled HM processes which we have considered throughout this manuscript, are problems characterized by two unknowns, namely bulk displacement (\(\varvec{u}\)) and fluid pressure (p). The standpoint we have taken in this manuscript is to compress the snapshots, compute reduced bases, and build neural networks for each variable separately (see Sect. 3). In the following, we refer to this method as the partitioned method. However, an alternative is to consider the two unknowns \((\varvec{u}, p)\) as a global (or monolithic) solution and derive global reduced bases from the compression of \(\varvec{u}\) and p fields together. One advantage of doing that is that one only needs to train one neural network to approximate two variables. In the following, we will refer to this alternative method as the monolithic approach.

Fig. 20
figure 20

Sensitivity analysis–errors of reconstruction solutions using 1000 testing \(\varvec{\mu }\): a mean squared error (MSE) of displacement field (\(\varvec{u}\)) with \(\mathrm {M} = 400\), \(\mathrm {N} = 10\), \(\mathrm {N}_{\mathrm{hl}} = 3\), and \(\mathrm {N}_{\mathrm{nn}} = 7\), b mean squared error (MSE) of fluid pressure field (p) with \(\mathrm {M} = 400\), \(\mathrm {N} = 10\), \(\mathrm {N}_{\mathrm{hl}} = 3\), and \(\mathrm {N}_{\mathrm{nn}} = 7\). We fix \(\mathrm {N_{int}} = 10\). The red squares represent outliers, and the box plot covers the interval from the 25th percentile to 75th percentile, highlighting the mean (50th percentile) with an orange line. We note that this figure presents the results of monolithic approach applied to Example 4. Please refer to Figure 19 for the results of partitioned method

We present the results of the monolithic method in Fig. 20. The problem setting including geometry, material properties, and boundary conditions are as in Example 4. Moreover, the ROM parameters are applied according to model 1: \(\mathrm {M} = 400\), \(\mathrm {N}_{\mathrm{int}} = 10\), \(\mathrm {N} = 10\), \(\mathrm {N}_{\mathrm{hl}} = 3\), and \(\mathrm {N}_{\mathrm{nn}} = 7\), in Sect. 4.2.5. From these results, we clearly observe that the error of \(\varvec{u}\) field in Fig. 20a is significantly higher than that of Fig. 19a. However, the results of p field between Figs. 20b and 19c are approximately similar.

This observation is as expected because the magnitude of \(\varvec{u}\) and p are significantly different (six to seven orders of magnitude apart). The monolithic method compresses and builds a single set of reduced basis and neural networks for both variables. Due to the different orders of magnitude, the monolithic approach would only try to capture the p field, neglecting the \(\varvec{u}\) field. Therefore, in practical applications, one would require considering the range of each state variable before training the monolithic method. To counteract this effect, in the loss function of the ANN, one could scale the contributions coming from the two-state variables trying to take into account the different orders of magnitude. However, such tuning may be cumbersome for problems with a large number of state variables. Instead, the partitioned approach results in improved performance for our HM problems and does not require any scaling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadeethum, T., Ballarin, F. & Bouklas, N. Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation. Int J Geomath 12, 12 (2021). https://doi.org/10.1007/s13137-021-00180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-021-00180-4

Keywords

Navigation