Skip to main content
Log in

Fast and robust flow simulations in discrete fracture networks with GPGPUs

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

A new approach for flow simulation in very complex discrete fracture networks based on PDE-constrained optimization has been recently proposed in Berrone et al. (SIAM J Sci Comput 35(2):B487–B510, 2013b; J Comput Phys 256:838–853, 2014) with the aim of improving robustness with respect to geometrical complexities. This is an essential issue, in particular for applications requiring simulations on geometries automatically generated like the ones used for uncertainty quantification analyses and hydro-mechanical simulations. In this paper, implementation of this approach in order to exploit Nvidia Compute Unified Device Architecture is discussed with the main focus to speed up the linear algebra operations required by the approach, being this task the most computational demanding part of the approach. Furthermore, two different approaches for linear algebra operations and two storage formats for sparse matrices are compared in terms of computational efficiency and memory constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed, R., Edwards, M.G., Lamine, S., Huisman, B.A., Pal, M.: CVD-MPFA full pressure support, coupled unstructured discrete fracture–matrix Darcy-flux approximations. J. Comput. Phys. 349, 265–299 (2017)

    MathSciNet  MATH  Google Scholar 

  • Al-Hinai, O., Singh, G., Pencheva, G., Almani, T., Wheeler, M.F., et al.: Modeling multiphase flow with nonplanar fractures. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2013)

  • Al-Hinai, O., Wheeler, M.F., Yotov, I.: A generalized mimetic finite difference method and two-point flux schemes over Voronoi diagrams. ESAIM Math. Model. Numer. Anal. 51(2), 679–706 (2017)

    MathSciNet  MATH  Google Scholar 

  • Antonietti, P., Formaggia, L., Scotti, A., Verani, M., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM Math. Model. Numer. Anal. 50(3), 809–832 (2016)

    MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, vol. 11. Springer, Berlin (2014)

    MATH  Google Scholar 

  • Benedetto, M.F., Berrone, S., Pieraccini, S., Scialò, S.: The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280, 135–156 (2014)

    MathSciNet  MATH  Google Scholar 

  • Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306, 148–166 (2016)

    MathSciNet  MATH  Google Scholar 

  • Benedetto, M.F., Borio, A., Scialò, S.: Mixed virtual elements for discrete fracture network simulations. Finite Elem. Anal. Des. 134, 55–67 (2017)

    MathSciNet  Google Scholar 

  • Berrone, S., Borio, A.: Orthogonal polynomials in badly shaped polygonal elements for the virtual element method. Finite Elem. Anal. Des. 129, 14–31 (2017)

    MathSciNet  Google Scholar 

  • Berrone, S., Pieraccini, S., Scialò, S.: On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35(2), A908–A935 (2013a)

    MathSciNet  MATH  Google Scholar 

  • Berrone, S., Pieraccini, S., Scialò, S.: A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35(2), B487–B510 (2013b)

    MathSciNet  MATH  Google Scholar 

  • Berrone, S., Pieraccini, S., Scialò, S.: An optimization approach for large scale simulations of discrete fracture network flows. J. Comput. Phys. 256, 838–853 (2014)

    MathSciNet  MATH  Google Scholar 

  • Berrone, S., Pieraccini, S., Scialò, S., Vicini, F.: A parallel solver for large scale DFN flow simulations. SIAM J. Sci. Comput. 37(3), C285–C306 (2015)

    MathSciNet  MATH  Google Scholar 

  • Berrone, S., Borio, A., Scialò, S.: A posteriori error estimate for a PDE-constrained optimization formulation for the flow in DFNs. SIAM J. Numer. Anal. 54(1), 242–261 (2016a)

    MathSciNet  MATH  Google Scholar 

  • Berrone, S., Pieraccini, S., Scialò, S.: Towards effective flow simulations in realistic discrete fracture networks. J. Comput. Phys. 310, 181–201 (2016b)

    MathSciNet  MATH  Google Scholar 

  • Berrone, S., Pieraccini, S., Scialò, S.: Flow simulations in porous media with immersed intersecting fractures. J. Comput. Phys. 345, 768–791 (2017a)

    MathSciNet  MATH  Google Scholar 

  • Berrone, S., Pieraccini, S., Scialò, S.: Non-stationary transport phenomena in networks of fractures: effective simulations and stochastic analysis. Comput. Methods Appl. Mech. Eng. 315, 1098–1112 (2017b)

    MathSciNet  Google Scholar 

  • Berrone, S., Canuto, C., Pieraccini, S., Scialò, S.: Uncertainty quantification in discrete fracture network models: stochastic geometry. Water Resour. Res. 54, 1338–1352 (2018)

    Google Scholar 

  • Brenner, K., Hennicker, J., Masson, R., Samier, P.: Gradient discretization of hybrid-dimensional Darcy flow in fractured porous media with discontinuous pressures at matrix–fracture interfaces. IMA J. Numer. Anal. 37(3), 1551–1585 (2017)

    MathSciNet  MATH  Google Scholar 

  • Cacas, M.C., Ledoux, E., de Marsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resour. Res. 26, 479–489 (1990)

    Google Scholar 

  • Chave, F., Di Pietro, D.A., Formaggia, L.: A hybrid high-order method for Darcy flows in fractured porous media. SIAM J. Sci. Comput. 40(2), A1063–A1094 (2018)

    MathSciNet  MATH  Google Scholar 

  • de Dreuzy, J.R., Davy, P., Bour, O.: Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on log-normal distribution of apertures. Water Resour. Res. 37(8), 2079–2095 (2001)

    Google Scholar 

  • de Dreuzy, J.R., Pichot, G., Poirriez, B., Erhel, J.: Synthetic benchmark for modeling flow in 3D fractured media. Comput. Geosci. 50, 59–71 (2013)

    Google Scholar 

  • Dershowitz, W.S., Einstein, H.H.: Characterizing rock joint geometry with joint system models. Rock Mech. Rock Eng. 1, 21–51 (1988)

    Google Scholar 

  • Dershowitz, W.S., Fidelibus, C.: Derivation of equivalent pipe networks analogues for three-dimensional discrete fracture networks by the boundary element method. Water Resour. Res. 35, 2685–2691 (1999)

    Google Scholar 

  • Fidelibus, C.: The 2D hydro-mechanically coupled response of a rock mass with fractures via a mixed BEM–FEM technique. Int. J. Numer. Anal. Methods Geomech. 31(11), 1329–1348 (2007)

    MATH  Google Scholar 

  • Fidelibus, C., Cammarata, G., Cravero, M.: Hydraulic characterization of fractured rocks. In: Abbie, M., Bedford, J.S. (eds.) Rock Mechanics: New Research. Nova Science Publishers Inc., New York (2009)

    Google Scholar 

  • Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., Tatomir, A.: Benchmarks for single-phase flow in fractured porous media. Adv. Water Resour. 111, 239–258 (2018)

    Google Scholar 

  • Franc, J., Jeannin, L., Debenest, G., Masson, R.: FV-MHMM method for reservoir modeling. Comput. Geosci. 21(5), 895–908 (2017)

    MathSciNet  MATH  Google Scholar 

  • Fumagalli, A., Keilegavlen, E.: Dual virtual element method for discrete fractures networks. SIAM J. Sci. Comput. 40(1), B228–B258 (2018)

    MathSciNet  MATH  Google Scholar 

  • Fumagalli, A., Keilegavlen, E., Scialò, S.: Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations. https://doi.org/10.1016/j.jcp.2018.09.048 (2018)

    MathSciNet  MATH  Google Scholar 

  • Fumagalli, A., Scotti, A.: An efficient XFEM approximation of Darcy flows in arbitrarily fractured porous media. Oil Gas Sci. Technol. Rev. dIFP Energ. Nouv. 69(4), 555–564 (2014)

    Google Scholar 

  • Garipov, T.T., Karimi-Fard, M., Tchelepi, H.A.: Discrete fracture model for coupled flow and geomechanics. Comput. Geosci. 20(1), 149–160 (2016)

    MathSciNet  MATH  Google Scholar 

  • Guennebaud, G., Jacob, B., et al.: Eigen v3 documentation. http://eigen.tuxfamily.org (2010). Accessed 10 Oct 2018

  • Hadgu, T., Karra, S., Kalinina, E., Makedonska, N., Hyman, J.D., Klise, K., Viswanathan, H.S., Wang, Y.: A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. J. Hydrol. 553, 59–70 (2017)

    Google Scholar 

  • Hyman, J.D., Gable, C.W., Painter, S.L., Makedonska, N.: Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy. SIAM J. Sci. Comput. 36(4), A1871–A1894 (2014)

    MathSciNet  MATH  Google Scholar 

  • Jaffré, J., Roberts, J.E.: Modeling flow in porous media with fractures; discrete fracture models with matrix–fracture exchange. Numer. Anal. Appl. 5(2), 162–167 (2012)

    MATH  Google Scholar 

  • Lenti, V., Fidelibus, C.: A BEM solution of steady-state flow problems in discrete fracture networks with minimization of core storage. Comput. Geosci. 29(9), 1183–1190 (2003)

    Google Scholar 

  • Manzoor, S., Edwards, M.G., Dogru, A.H., Al-Shaalan, T.M.: Interior boundary-aligned unstructured grid generation and cell-centered versus vertex-centered CVD-MPFA performance. Comput. Geosci. 22(1), 195–230 (2018)

    MathSciNet  MATH  Google Scholar 

  • Merrill, D., Garland, M.: Merge-based parallel sparse matrix–vector multiplication. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC’16, pp. 58:1–58:12. IEEE Press, Piscataway (2016)

  • Mustapha, H., Mustapha, K.: A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J. Sci. Comput. 29(4), 1439–1459 (2007)

    MathSciNet  MATH  Google Scholar 

  • Ngo, T.D., Fourno, A., Noetinger, B.: Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software. J. Hydrol. 554, 66–79 (2017)

    Google Scholar 

  • Noetinger, B.: A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow. J. Comput. Phys. 283, 205–223 (2015)

    MathSciNet  MATH  Google Scholar 

  • Noetinger, B., Jarrige, N.: A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks. J. Comput. Phys. 231(1), 23–38 (2012)

    MathSciNet  MATH  Google Scholar 

  • Nvidia, C: Cublas documentation. http://docs.nvidia.com/cuda/cublas (2008a). Accessed 10 Oct 2018

  • Nvidia, C.: Cuda toolkit. https://developer.nvidia.com/cuda-toolkit (2008b). Accessed 10 Oct 2018

  • Nvidia, C.: Cuda toolkit documentation. http://docs.nvidia.com/cuda-toolkit (2008c). Accessed 10 Oct 2018

  • Nvidia, C.: Cusparse documentation. http://docs.nvidia.com/cuda/cusparse (2008d). Accessed 10 Oct 2018

  • Parramore, E., Edwards, M.G., Pal, M., Lamine, S.: Multiscale finite-volume CVD-MPFA formulations on structured and unstructured grids. Multiscale Model. Simul. 14(2), 559–594 (2016)

    MathSciNet  MATH  Google Scholar 

  • Pichot, G., Erhel, J., de Dreuzy, J.R.: A mixed hybrid mortar method for solving flow in discrete fracture networks. Appl. Anal. 89(10), 1629–1643 (2010)

    MathSciNet  MATH  Google Scholar 

  • Pichot, G., Erhel, J., de Dreuzy, J.R.: A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks. SIAM J. Sci. Comput. 34(1), B86–B105 (2012)

    MathSciNet  MATH  Google Scholar 

  • Pichot, G., Poirriez, B., Erhel, J., de Dreuzy, J.R.: A mortar BDD method for solving flow in stochastic discrete fracture networks. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds.) Domain Decomposition Methods in Science and Engineering XXI, pp. 99–112. Springer, Cham (2014)

    MATH  Google Scholar 

  • Sentís, M.L., Gable, C.W.: Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: a case study. Comput. Geosci. 108, 42–49 (2017)

    Google Scholar 

  • Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering. Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996). (from the first ACM workshop on applied computational geometry)

    Google Scholar 

  • Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1), 21–74 (2002). (16th ACM symposium on computational geometry)

    MathSciNet  MATH  Google Scholar 

  • Vohralík, M., Maryška, J., Severýn, O.: Mixed and nonconforming finite element methods on a system of polygons. Appl. Numer. Math. 51, 176–193 (2007)

    MathSciNet  MATH  Google Scholar 

  • Xing, F., Masson, R., Lopez, S.: Parallel vertex approximate gradient discretization of hybrid dimensional Darcy flow and transport in discrete fracture networks. Comput. Geosci. 21(4), 595–617 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Berrone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been partially supported by INdAM-GNCS Projects 2017 and 2018, and by the MIUR Project “Dipartimenti di Eccellenza 2018–2022”. Computational resources were partially provided by HPC@POLITO (http://hpc.polito.it) and by CINECA Project IsC58 HP10CDFLWH.

Authors are members of the INdAM research group GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrone, S., D’Auria, A. & Vicini, F. Fast and robust flow simulations in discrete fracture networks with GPGPUs. Int J Geomath 10, 8 (2019). https://doi.org/10.1007/s13137-019-0121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-019-0121-y

Keywords

Mathematics Subject Classification

Navigation