Skip to main content

Advertisement

Log in

Introducing Antifragility Analysis Algorithm for Assessing Digitalization Strategies of the Agricultural Economy in the Small Farming Section

  • Published:
Journal of the Knowledge Economy Aims and scope Submit manuscript

Abstract

The agricultural economy strives to increase productivity to feed the world's growing population. In this regard, agricultural digitalization has been enormously concerned and proffered. Digitalizing agriculture must be incorporated into most developing countries to gain benefits. For this purpose, every developing country needs to define a digitalization strategy. Many governments face a challenge while assessing digitalization options. Without an appropriate assessment technique, selecting the best solution is hardly possible among the many available technologies. This paper aims to conceptualize a new framework for assessing strategies. Antifragility analysis algorithm (AAA), introduced in the present study, is a state-of-the-art future-based scenario method that can maximize decision outcomes. According to the literature, an antifragile system increases its capability to thrive due to shocks, volatility, attacks, etc. In this research, the heuristic involves altering model inputs for future scenarios by considering the most significant environmental factors shaping future uncertainty. An antifragile strategy produces better average results than the current scenario after adjustments. Finally, antifragile strategies are ranked based on their antifragility scores. To explain the technique, we examined seven strategies for digitalizing the small farming sector in northern Iran. Then, we showed the alternatives’ priority based on six key indicators that formed the future scenarios. According to the results, among the digitalization strategies implementable in the small farming sector in Iran, IoT will be the most antifragile strategy considering future scenarios, and following, the sensor strategy will be the next option. While considering the most important elements of decision-making, i.e., complexity and uncertainty, the proposed approach can benefit managers, organizations, policymakers, in making strategic decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry – A systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 100042. https://doi.org/10.1016/j.atech.2022.100042

  • Abid, A., Khemakhem, M. T., Marzouk, S., Jemaa, M. B., Monteil, T., & Drira, K. (2014). Toward antifragile cloud computing infrastructures. Procedia Computer Science, 32, 850–855. https://doi.org/10.1016/j.procs.2014.05.501

    Article  Google Scholar 

  • Aceto, G., Persico, V., & Pescapé, A. (2019). A survey on information and communication technologies for industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Communications Surveys and Tutorials, 21(4), 3467–3501. https://doi.org/10.1109/COMST.2019.2938259

  • Adak, A. K., & Kumar, G. (2023). Spherical distance measurement method for solving MCDM problems under Pythagorean fuzzy environment. Journal of Fuzzy Extension and Applications, 4(1), 28–39. https://doi.org/10.22105/jfea.2022.351677.1224

  • Akinfiev, V., & Tsvirkun, A. (2021). Decision support systems for stable development of agricultural SMEs. IFAC-PapersOnLine, 54(13), 289–292. https://doi.org/10.1016/j.ifacol.2021.10.461

    Article  Google Scholar 

  • Akshatha, Y., & Poornima, A. S. (2022). IoT enabled smart farming: A review. Proceedings - 2022 6th International Conference on Intelligent Computing and Control Systems, ICICCS 2022, 431–436. https://doi.org/10.1109/ICICCS53718.2022.9788149

  • Alt, V., Isakova, S., & Balushkina, E. (2020). Digitalization: Problems of its development in modern agricultural production. E3S Web Conferences, 210.

  • Andrade-Sanchez, P., & Heun, J. T. (2010). Understanding technical terms and acronyms used in precision agriculture. In The University of Arizona Cooperative Extension - AZ1534 (pp. 1–5). College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ).

  • Araújo, S. O., Peres, R. S., Barata, J., Lidon, F., & Ramalho, J. C. (2021). Characterising the agriculture 4.0 landscape—Emerging trends, challenges and opportunities. In Agronomy (Vol. 11, Issue 4). https://doi.org/10.3390/agronomy11040667

  • Arlinghaus, J., & Antons, O. (2022). Management for digitalization and industry 4.0. In W. Frenz (Ed.), Handbook industry 4.0 (pp. 927–948). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-64448-5_49

  • Arshad, J., Aziz, M., Al-Huqail, A. A., Zaman, M. H. U., Husnain, M., Rehman, A. U., & Shafiq, M. (2022). Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield. In Sustainability (Switzerland) (Vol. 14, Issue 2). https://doi.org/10.3390/su14020827

  • Askari, R., Pourkosari, F., Koupal, R., & Mokhtari, M. (2022). Presented and prioritizing waste management strategies using SWOT and QSPM approach in two private hospitals in Yazd in 2021. International Journal of Environmental Health Research, 1–14. https://doi.org/10.1080/09603123.2022.2099533

  • Aven, T. (2015). The concept of antifragility and its implications for the practice of risk analysis. Risk Analysis, 35(3), 476–483. https://doi.org/10.1111/risa.12279

    Article  Google Scholar 

  • Azar, A., & Sorourkhah, A. (2015). Designing a model for three-dimensional robustness analysis: A case study of Iran Khodro machine tools industries company. Indian Journal of Science and Technology, 8(28). https://doi.org/10.17485/ijst/2015/v8i28/82447

  • Bartolini, N., & DeSilvey, C. (2021). Landscape futures: Decision-making in uncertain times, a literature review. Landscape Research, 46(1), 8–24. https://doi.org/10.1080/01426397.2020.1861228

    Article  Google Scholar 

  • Baryshnikova, N., Sukhorukova, A., & Naidenova, N. (2019). Digitalization of agriculture: strategic opportunities and risks for Russia. 167(Ispc), 236–241. https://doi.org/10.2991/ispc-19.2019.53

  • Bhat, S. A. (2023). An enhanced AHP group decision-making model employing neutrosophic trapezoidal numbers. Journal of Operational and Strategic Analytics, 1(2), 81–89. https://doi.org/10.56578/josa010205

  • Boursianis, A. D., Papadopoulou, M. S., Diamantoulakis, P., Liopa-Tsakalidi, A., Barouchas, P., Salahas, G., Karagiannidis, G., Wan, S., & Goudos, S. K. (2022). Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet of Things (netherlands), 18, 100187. https://doi.org/10.1016/j.iot.2020.100187

    Article  Google Scholar 

  • Cabrerizo, F. J., Trillo, J. R., Alonso, S., & Morente-Molinera, J. A. (2022). Adaptive multi-criteria group decision-making model based on consistency and consensus with intuitionistic reciprocal preference relations: a case study in energy storage technology selection. Journal of Smart Environments and Green Computing, 2(2), 58–75. https://doi.org/10.20517/jsegc.2022.15

  • Carmela Annosi, M., Brunetta, F., Capo, F., & Heideveld, L. (2020). Digitalization in the agri-food industry: The relationship between technology and sustainable development. Management Decision, 58(8), 1737–1757. https://doi.org/10.1108/MD-09-2019-1328

    Article  Google Scholar 

  • Cetin, M. (2015). Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. International Journal of Sustainable Development & World Ecology, 1–5. https://doi.org/10.1080/13504509.2015.1061066

  • Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361–375. https://doi.org/10.1007/s10668-016-9885-5

    Article  Google Scholar 

  • Cetin, M., Aksoy, T., Cabuk, S. N., Senyel Kurkcuoglu, M. A., & Cabuk, A. (2021). Employing remote sensing technique to monitor the influence of newly established universities in creating an urban development process on the respective cities. Land Use Policy, 109, 105705. https://doi.org/10.1016/j.landusepol.2021.105705

    Article  Google Scholar 

  • Danchin, A., Binder, P. M., & Noria, S. (2011). Antifragility and tinkering in biology (and in business) flexibility provides an efficient epigenetic way to manage risk. In Genes (Vol. 2, Issue 4, pp. 998–1016). https://doi.org/10.3390/genes2040998

  • De Felice, F., & Petrillo, A. (2021). An interdisciplinary framework to define strategies for digitalization and sustainability: Proposal of a ‘digicircular’ model. IET Collaborative Intelligent Manufacturing, 3(1), 75–84. https://doi.org/10.1049/cim2.12013

    Article  Google Scholar 

  • Derbyshire, J., & Wright, G. (2014). Preparing for the future: Development of an ‘antifragile’ methodology that complements scenario planning by omitting causation. Technological Forecasting and Social Change, 82, 215–225. https://doi.org/10.1016/j.techfore.2013.07.001

  • Dibirov, A., & Dibirova, K. (2022). Prospects and problems of digitalization of the agricultural economy BT - Agriculture digitalization and organic production (A. Ronzhin, K. Berns, & A. Kostyaev, Eds.; pp. 207–218). Springer Singapore.

  • Dzanku, F. M., & Osei, R. D. (2022). Does combining traditional and information and communications technology–based extension methods improve agricultural outcomes? Evidence from field experiments in Mali. Review of Development Economics, n/a(n/a). https://doi.org/10.1111/rode.12926

  • Ehlers, M. H., Huber, R., & Finger, R. (2021). Agricultural policy in the era of digitalisation. Food Policy, 100, 102019. https://doi.org/10.1016/j.foodpol.2020.102019

    Article  Google Scholar 

  • Ehsan, I., Irfan Khalid, M., Ricci, L., Iqbal, J., Alabrah, A., Sajid Ullah, S., & Alfakih, T. M. (2022). A conceptual model for blockchain-based agriculture food supply chain system. Scientific Programming, 2022, 7358354. https://doi.org/10.1155/2022/7358354

    Article  Google Scholar 

  • El Bilali, H., & Allahyari, M. S. (2018). Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Information Processing in Agriculture, 5(4), 456–464. https://doi.org/10.1016/j.inpa.2018.06.006

    Article  Google Scholar 

  • Fan, P., Zhu, Y., Ye, Z., Zhang, G., Gu, S., Shen, Q., Meshram, S. G., & Alvandi, E. (2023). Identification and prioritization of tourism development strategies using SWOT, QSPM, and AHP: A case study of Changbai Mountain in China. Sustainability, 15(6), 4962. https://doi.org/10.3390/su15064962

    Article  Google Scholar 

  • Fielke, S. J., Garrard, R., Jakku, E., Fleming, A., Wiseman, L., & Taylor, B. M. (2019). Conceptualising the DAIS: Implications of the ‘Digitalisation of Agricultural Innovation Systems’ on technology and policy at multiple levels. NJAS - Wageningen Journal of Life Sciences, 90–91(1), 1–11. https://doi.org/10.1016/j.njas.2019.04.002

    Article  Google Scholar 

  • Fuchs, A. (2019). The digitalization of farming means improving the processes. Atzheavy Duty Worldwide, 12(4), 22–25. https://doi.org/10.1007/s41321-019-0058-y

    Article  Google Scholar 

  • Gai, J., Tang, L., & Steward, B. L. (2020). Automated crop plant detection based on the fusion of color and depth images for robotic weed control. Journal of Field Robotics, 37(1), 35–52. https://doi.org/10.1002/rob.21897

    Article  Google Scholar 

  • Garske, B., Bau, A., & Ekardt, F. (2021). Digitalization and AI in European agriculture: A strategy for achieving climate and biodiversity targets? In Sustainability (Vol. 13, Issue 9). https://doi.org/10.3390/su13094652

  • Gopalakrishnan, M., Subramaniyan, M., & Skoogh, A. (2022). Data-driven machine criticality assessment–maintenance decision support for increased productivity. Production Planning and Control, 33(1), 1–19. https://doi.org/10.1080/09537287.2020.1817601

    Article  Google Scholar 

  • Ha, L. T., & Thanh, T. T. (2022). Effects of digital public services on trades in green goods: Does institutional quality matter? Journal of Innovation and Knowledge, 7(1), 100168. https://doi.org/10.1016/j.jik.2022.100168

    Article  Google Scholar 

  • Haggag, W. M. (2021). Agricultural digitalization and rural development in COVID-19 response plans: A review article. International Journal of Agricultural Technology, 17(1), 67–74.

    Google Scholar 

  • Hayati, M., Mahdevari, S., & Barani, K. (2023). An improved MADM-based SWOT analysis for strategic planning in dimension stones industry. Resources Policy, 80, 103287. https://doi.org/10.1016/j.resourpol.2022.103287

    Article  Google Scholar 

  • Heredia, J., Castillo-Vergara, M., Geldes, C., Carbajal Gamarra, F. M., Flores, A., & Heredia, W. (2022). How do digital capabilities affect firm performance? The mediating role of technological capabilities in the “new normal.” Journal of Innovation & Knowledge, 7(2), 100171. https://doi.org/10.1016/j.jik.2022.100171

  • Hoe, S. L. (2019). Digitalization in practice: The fifth discipline advantage. The Learning Organization, 27(1), 54–64. https://doi.org/10.1108/TLO-09-2019-0137

    Article  Google Scholar 

  • Htun, N.-N., Rojo, D., Ooge, J., De Croon, R., Kasimati, A., & Verbert, K. (2022). Developing visual-assisted decision support systems across diverse agricultural use cases. In Agriculture (Vol. 12, Issue 7, p. 1027). https://doi.org/10.3390/agriculture12071027

  • Jiang, J. A., Liao, M. S., Lin, T. S., Huang, C. K., Chou, C. Y., Yeh, S. H., Lin, T. T., & Fang, W. (2018). Toward a higher yield: A wireless sensor network-based temperature monitoring and fan-circulating system for precision cultivation in plant factories. Precision Agriculture, 19(5), 929–956. https://doi.org/10.1007/s11119-018-9565-6

    Article  Google Scholar 

  • Jorge-Vázquez, J., Chivite-Cebolla, M. P., & Salinas-Ramos, F. (2021). The digitalization of the European Agri-food cooperative sector. Determining factors to embrace information and communication technologies. In Agriculture (Vol. 11, Issue 6). https://doi.org/10.3390/agriculture11060514

  • Kashapov, N. F., Nafikov, M. M., Gazetdinov, M. K. H., Gazetdinov, S. H. M., & Nigmatzyanov, A. R. (2019). Modern problems of digitalization of agricultural production. IOP Conference Series: Materials Science and Engineering, 570(1), 12044. https://doi.org/10.1088/1757-899x/570/1/012044

    Article  Google Scholar 

  • Kim, K.-H., Petri, M., Inthipunya, K., Manivong, V., Han, J., Park, J., Palao, L. K., Phouthanoxay, S., Keomanivong, S., Silattana, S., Chanthavong, V., Phommaya, S., & Siyavong, P. (2022). Information and communication technology-based service platform enabling the co-creation of agrometeorological services: A case study of the Laos Climate Services for Agriculture. Climate Services, 27, 100316. https://doi.org/10.1016/j.cliser.2022.100316

  • Kim, S. Y., Nguyen, M. V., & Dao, T. T. N. (2021). Prioritizing complexity using fuzzy DANP: Case study of international development projects. Engineering, Construction and Architectural Management, 28(4), 1114–1133. https://doi.org/10.1108/ECAM-04-2020-0265

    Article  Google Scholar 

  • Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90–91, 100315. https://doi.org/10.1016/j.njas.2019.100315

  • Kroh, J., Luetjen, H., Globocnik, D., & Schultz, C. (2018). Use and efficacy of information technology in innovation processes: The specific role of servitization. Journal of Product Innovation Management, 35(5), 720–741. https://doi.org/10.1111/jpim.12445

    Article  Google Scholar 

  • Krupina, G. D., Safiullin, N. A., Kudryavtseva, S. S., Savushkina, L. N., & Kurakova, C. M. (2020). Analysis of the digitalization efficiency in agricultural complex in the Republic of Tatarstan. BIO Web of Conferences, 17, 00230. https://doi.org/10.1051/bioconf/20201700230

    Article  Google Scholar 

  • Lajoie-O’Malley, A., Bronson, K., van der Burg, S., & Klerkx, L. (2020). The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosystem Services, 45, 101183. https://doi.org/10.1016/j.ecoser.2020.101183

    Article  Google Scholar 

  • Latino, M. E., Menegoli, M., & Corallo, A. (2022). Agriculture digitalization: A global examination based on bibliometric analysis. IEEE Transactions on Engineering Management, 1–16. https://doi.org/10.1109/TEM.2022.3154841

  • Levin, J. S., Brodfuehrer, S. P., & Kroshl, W. M. (2014). Detecting antifragile decisions and models: Lessons from a conceptual analysis model of service life extension of aging vehicles. 8th Annual IEEE International Systems Conference, SysCon 2014 - Proceedings, 285–292. https://doi.org/10.1109/SysCon.2014.6819271

  • Lichtman, M., Vondal, M. T., Clancy, T. C., & Reed, J. H. (2018). Antifragile communications. IEEE Systems Journal, 12(1), 659–670. https://doi.org/10.1109/JSYST.2016.2517164

    Article  Google Scholar 

  • Lioutas, E. D., Charatsari, C., & De Rosa, M. (2021). Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technology in Society, 67, 101744. https://doi.org/10.1016/j.techsoc.2021.101744

  • Liu, W., Zhou, W., & Lu, L. (2022). An innovative digitization evaluation scheme for Spatio-temporal coordination relationship between multiple knowledge driven rural economic development and agricultural ecological environment—Coupling coordination model analysis based on Guangxi. Journal of Innovation & Knowledge, 7(3), 100208. https://doi.org/10.1016/j.jik.2022.100208

  • Macpherson, A. J., Voglhuber-slavinsky, A., Olbrisch, M., & Schöbel, P. (2022). Future agricultural systems and the role of digitalization for achieving sustainability goals : A review. Agronomy for Sustainable Development, 6, 1–27. https://doi.org/10.1007/s13593-022-00792-6

  • Madaswamy, M. (2020). Digitalization of agriculture in India: Application of IoT; robotics and informatics to establish farm extension 4.0. Journal of Informatics and Innovative Technologies, 4(2), 23–32.

  • Mallick, S. K., Rudra, S., & Samanta, R. (2020). Sustainable ecotourism development using SWOT and QSPM approach: A study on Rameswaram, Tamil Nadu. International Journal of Geoheritage and Parks, 8(3), 185–193. https://doi.org/10.1016/j.ijgeop.2020.06.001

  • Mao, Q., Chen, J., Lv, J., & Chen, S. (2023). Emergency plan selection for epidemic prevention and control based on cumulative prospect theory and hybrid-information MADM. Kybernetes, 52(5), 1903–1933. https://doi.org/10.1108/K-08-2021-0736

    Article  Google Scholar 

  • Martin, N., & Edalatpanah, S. A. (2023). Application of extended fuzzy ISOCOV methodology in nanomaterial selection based on performance measures. Journal of Operational and Strategic Analytics, 1(2), 55–61. https://doi.org/10.56578/josa010202

  • Miranda, B. V., Monteiro, G. F. A., & Rodrigues, V. P. (2021). Circular agri-food systems: A governance perspective for the analysis of sustainable agri-food value chains. Technological Forecasting and Social Change, 170, 120878. https://doi.org/10.1016/j.techfore.2021.120878

    Article  Google Scholar 

  • Mirbagheri, S. M., & Rafii Atani, A. O. (2023). Strategic analysis of the participatory budgeting plan “i am the mayor” using SWOT-QSPM technique. Urban Economics and Planning, 4(2), 20–33. https://doi.org/10.22034/uep.2023.391616.1343

  • Mohammadi, K. (2023). Improved strategy management for WDNs: Integrated prioritization SWOT QSPM (IPSQ) method – Application to passive defense. Socio-Economic Planning Sciences, 88, 101663. https://doi.org/10.1016/j.seps.2023.101663

    Article  Google Scholar 

  • Mok, W. K., Tan, Y. X., & Chen, W. N. (2020). Technology innovations for food security in Singapore: A case study of future food systems for an increasingly natural resource-scarce world. Trends in Food Science and Technology, 102, 155–168. https://doi.org/10.1016/j.tifs.2020.06.013

    Article  Google Scholar 

  • Munir, K., Ghafoor, M., Khafagy, M., & Ihshaish, H. (2022). AgroSupportAnalytics: A cloud-based complaints management and decision support system for sustainable farming in Egypt. Egyptian Informatics Journal, 23(1), 73–82. https://doi.org/10.1016/j.eij.2021.06.002

    Article  Google Scholar 

  • Naji, A., Ghodrat, M., Komaie-Moghaddam, H., & Podgornik, R. (2014). Asymmetric Coulomb fluids at randomly charged dielectric interfaces: Anti-fragility, overcharging and charge inversion. Journal of Chemical Physics, 141(17), 174704. https://doi.org/10.1063/1.4898663

    Article  Google Scholar 

  • Nasirahmadi, A., & Hensel, O. (2022). Toward the Next generation of digitalization in agriculture based on digital twin paradigm. In Sensors (Vol. 22, Issue 2). https://doi.org/10.3390/s22020498

  • Nezamova, O. A., & Olentsova, J. A. (2022). The main trends of digitalization in agriculture. IOP Conference Series: Earth and Environmental Science, 981(3), 0–8. https://doi.org/10.1088/1755-1315/981/3/032018

  • Novikov, I. S., Serdobintsev, D. V, & Aleshina, E. A. (2021). Conceptual approaches to information transformation (digitalization) of an agricultural enterprise. Scientific Papers-Series Management Economic Engineering in Agriculture and Rural Development, 21(2), 425–436 WE-Emerging Sources Citation Index (ESC.

  • Patil, P. G., Elluru, V., & Shivashankar, S. (2023). A new approach to MCDM problems by fuzzy binary soft sets. Journal of Fuzzy Extension and Applications. https://doi.org/10.22105/jfea.2023.390059.1257

  • Pfenning, P., & Eigner, M. (2020). A novel procedure model for developing individualized digitalization strategies. Proceedings of the Design Society: DESIGN Conference, 1, 667–676. https://doi.org/10.1017/dsd.2020.308

  • Phasinam, K., Kassanuk, T., Shinde, P. P., Thakar, C. M., Sharma, D. K., Mohiddin, M. K., & Rahmani, A. W. (2022). Application of IoT and cloud computing in automation of agriculture irrigation. Journal of Food Quality, 2022, 8285969. https://doi.org/10.1155/2022/8285969

    Article  Google Scholar 

  • Pineda, O. K., Kim, H., & Gershenson, C. (2019). A novel antifragility measure based on satisfaction and its application to random and biological Boolean networks. Complexity, 2019, 3728621. https://doi.org/10.1155/2019/3728621

    Article  Google Scholar 

  • Pramanik, S., Suman, D., Rakhal, D., & Binod, C. T. (2023). Neutrosophic BWM-TOPSIS strategy under SVNS environment. Neutrosophic Sets and Systems, 56(1), 178–189.

    Google Scholar 

  • Psarommatis, F., & Kiritsis, D. (2022). A hybrid Decision Support System for automating decision making in the event of defects in the era of Zero Defect Manufacturing. Journal of Industrial Information Integration, 26, 100263. https://doi.org/10.1016/j.jii.2021.100263

    Article  Google Scholar 

  • Raghuvanshi, A., Singh, U. K., Sajja, G. S., Pallathadka, H., Asenso, E., Kamal, M., Singh, A., & Phasinam, K. (2022). Intrusion detection using machine learning for risk mitigation in IoT-enabled smart irrigation in smart farming. Journal of Food Quality, 2022, 3955514. https://doi.org/10.1155/2022/3955514

    Article  Google Scholar 

  • Rahmadian, R., & Widyartono, M. (2020). Autonomous robotic in agriculture: a review. Proceeding - 2020 3rd International Conference on Vocational Education and Electrical Engineering: Strengthening the Framework of Society 5.0 through Innovations in Education, Electrical, Engineering and Informatics Engineering, ICVEE 2020, 1–6. https://doi.org/10.1109/ICVEE50212.2020.9243253

  • Ramachandran, V., Ramalakshmi, R., Kavin, B. P., Hussain, I., Almaliki, A. H., Almaliki, A. A., Elnaggar, A. Y., & Hussein, E. E. (2022). Exploiting IoT and its enabled technologies for irrigation needs in agriculture. In Water (Switzerland) (Vol. 14, Issue 5). https://doi.org/10.3390/w14050719

  • Ramirez, R., & Wilkinson, A. (2014). Rethinking the 2×2 scenario method: Grid or frames? Technological Forecasting and Social Change, 86, 254–264. https://doi.org/10.1016/j.techfore.2013.10.020

  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE, 8(6), e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  Google Scholar 

  • Reim, W., Yli-Viitala, P., Arrasvuori, J., & Parida, V. (2022). Tackling business model challenges in SME internationalization through digitalization. Journal of Innovation & Knowledge, 7(3), 100199. https://doi.org/10.1016/j.jik.2022.100199

  • Rezaei, F., & Rostami, F. (2023). A strategic analysis of overseas agriculture using SWOT and QSPM models: A case study of Iran. Journal of Geography and Regional Development, 21(2). https://doi.org/10.22067/jgrd.2023.78462.1184

  • Ritter, T., & Pedersen, C. L. (2020). Digitization capability and the digitalization of business models in business-to-business firms: Past, present, and future. Industrial Marketing Management, 86(November 2019), 180–190. https://doi.org/10.1016/j.indmarman.2019.11.019

  • Sarkar, M. R., Masud, S. R., Hossen, M. I., & Goh, M. (2022). A comprehensive study on the emerging effect of artificial intelligence in agriculture automation. 2022 IEEE 18th International Colloquium on Signal Processing and Applications, CSPA 2022 - Proceeding, 419–424. https://doi.org/10.1109/CSPA55076.2022.9781883

  • Sawah, S. E., & McLucas, A. (2009). Complex decision making: Theory and practice. European Journal of Operational Research, 197(2), 842–843. https://doi.org/10.1016/j.ejor.2008.11.001

  • Seeve, T., & Vilkkumaa, E. (2022). Identifying and visualizing a diverse set of plausible scenarios for strategic planning. European Journal of Operational Research, 298(2), 596–610. https://doi.org/10.1016/j.ejor.2021.07.004

    Article  Google Scholar 

  • Senapati, T., Simic, V., Saha, A., Dobrodolac, M., Rong, Y., & Tirkolaee, E. B. (2023). Intuitionistic fuzzy power Aczel-Alsina model for prioritization of sustainable transportation sharing practices. Engineering Applications of Artificial Intelligence, 119, 105716. https://doi.org/10.1016/j.engappai.2022.105716

    Article  Google Scholar 

  • Shepherd, M., Turner, J. A., Small, B., & Wheeler, D. (2020). Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. Journal of the Science of Food and Agriculture, 100(14), 5083–5092. https://doi.org/10.1002/jsfa.9346

    Article  Google Scholar 

  • Sibona, F., Chiavarini, L., Bortoletto, A., & Mainiero, S. (2020). Innovation in farming: An engaging and rewarding business model to foster digitalization. CERN IdeaSquare Journal of Experimental Innovation, 4(1 SE-Original Articles), 9–15. https://doi.org/10.23726/cij.2020.1052

  • Skare, M., & Riberio Soriano, D. (2021). How globalization is changing digital technology adoption: An international perspective. Journal of Innovation & Knowledge, 6(4), 222–233. https://doi.org/10.1016/j.jik.2021.04.001

  • Smith, M. J. (2019). Getting value from artificial intelligence in agriculture. Animal Production Science, 60(1), 46–54. https://doi.org/10.1071/AN18522

    Article  Google Scholar 

  • Soltanifar, M. (2022). A new interval for ranking alternatives in multi attribute decision making problems. Journal of Applied Research on Industrial Engineering. https://doi.org/10.22105/jarie.2022.339957.1467

  • Sorourkhah, A., Azar, A., & Nikabadi, M. S. (2018). Matrix approach to robustness analysis for strategy selection. International Journal of Industrial Mathematics, 10(3), 261–269.

    Google Scholar 

  • Sorourkhah, A., & Edalatpanah, S. A. (2022). Using a combination of matrix approach to robustness analysis (MARA) and fuzzy DEMATEL-based ANP (FDANP) to choose the best decision. International Journal of Mathematical, Engineering and Management Sciences, 7(1), 68–80. https://doi.org/10.33889/IJMEMS.2022.7.1.005

  • Sulimin, V. V., Shvedov, V. V., & Lvova, M. I. (2019). Digitization of agriculture: Innovative technologies and development models. IOP Conference Series: Earth and Environmental Science, 341(1), 12215. https://doi.org/10.1088/1755-1315/341/1/012215

    Article  Google Scholar 

  • Taleb, N. N. (2012). Antifragile (things that gain from disorder). The Random House Publishing Group.

  • Taleb, N. N., Canetti, E., Kinda, T., Loukoianova, E., & Schmieder, C. (2012). A new heuristic measure of fragility and tail risks: Application to stress testing. International Monetary Fund, 1–23.

  • Taleb, N. N., & Douady, R. (2013). Mathematical definition, mapping, and detection of (anti)fragility. Quantitative Finance, 13(11), 1677–1689. https://doi.org/10.1080/14697688.2013.800219

    Article  Google Scholar 

  • Trzaska, R., Sulich, A., Organa, M., Niemczyk, J., & Jasiński, B. (2021). Digitalization business strategies in energy sector: Solving problems with uncertainty under industry 4.0 conditions. In Energies (Vol. 14, Issue 23). https://doi.org/10.3390/en14237997

  • Tsolakis, N., Bechtsis, D., & Bochtis, D. (2019). Agros: A robot operating system based emulation tool for agricultural robotics. In Agronomy (Vol. 9, Issue 7). https://doi.org/10.3390/agronomy9070403

  • Ulezko, A., Reimer, V., & Ulezko, O. (2019). Theoretical and methodological aspects of digitalization in agriculture. IOP Conference Series: Earth and Environmental Science, 274(1), 12062. https://doi.org/10.1088/1755-1315/274/1/012062

    Article  Google Scholar 

  • Upadhyaya, L., Roy Burman, R., Sangeetha, V., Lenin, V., Sharma, J. P., & Dash, S. (2019). Digital inclusion: Strategies to bridge digital divide in farming community. Journal of Agricultural Science and Technology, 21(5), 1079–1089.

    Google Scholar 

  • Vanegas, F., Bratanov, D., Powell, K., Weiss, J., & Gonzalez, F. (2018). A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data. In Sensors (Switzerland) (Vol. 18, Issue 1). https://doi.org/10.3390/s18010260

  • Vuorinen, T., Hakala, H., Kohtamäki, M., & Uusitalo, K. (2018). Mapping the landscape of strategy tools: A review on strategy tools published in leading journals within the past 25 years. Long Range Planning, 51(4), 586–605. https://doi.org/10.1016/j.lrp.2017.06.005

  • Wang, Y., Xiao, Z., Tiong, R. L. K., & Zhang, L. (2021). Data-driven quantification of public–private partnership experience levels under uncertainty with Bayesian hierarchical model. Applied Soft Computing, 103, 107176. https://doi.org/10.1016/j.asoc.2021.107176

  • Woishi, W. (2019). the impact of digitization on the economy of Ksa in the context of vision 2030. International Journal of Engineering Applied Sciences and Technology, 04(04), 312–316. https://doi.org/10.33564/ijeast.2019.v04i04.051

  • Xiao, Z., & Lam, J. S. L. (2022). Effects of project-specific government involvement actions on the attractiveness of port public-private partnerships among private investors. Transport Policy, 125, 59–69. https://doi.org/10.1016/j.tranpol.2022.05.008

  • Yucedag, C., Kaya, L. G., & Cetin, M. (2018). Identifying and assessing environmental awareness of hotel and restaurant employees’ attitudes in the Amasra District of Bartin. Environmental Monitoring and Assessment, 190(2), 60. https://doi.org/10.1007/s10661-017-6456-7

    Article  Google Scholar 

  • Zahoor, Z., Khan, I., & Hou, F. (2022). Clean energy investment and financial development as determinants of environment and sustainable economic growth: Evidence from China. Environmental Science and Pollution Research, 29(11), 16006–16016. https://doi.org/10.1007/s11356-021-16832-9

    Article  Google Scholar 

  • Zhang, K., Xie, Y., Noorkhah, S. A., Imeni, M., & Das, S. K. (2022). Neutrosophic management evaluation of insurance companies by a hybrid TODIM-BSC method: A case study in private insurance companies. Management Decision, ahead-of-p(ahead-of-print). https://doi.org/10.1108/MD-01-2022-0120

  • Zhao, Y., Jiang, Z., Qiao, L., Guo, J., Pang, S., & Lv, Z. (2022). Agricultural digital twins. International Journal of Adaptive and Innovative Systems, 3(2), 144. https://doi.org/10.1504/ijais.2022.124364

    Article  Google Scholar 

  • Zhou, D., Yan, T., Dai, W., & Feng, J. (2021). Disentangling the interactions within and between servitization and digitalization strategies: A service-dominant logic. International Journal of Production Economics, 238, 108175. https://doi.org/10.1016/j.ijpe.2021.108175

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Y., Sorourkhah, A. et al. Introducing Antifragility Analysis Algorithm for Assessing Digitalization Strategies of the Agricultural Economy in the Small Farming Section. J Knowl Econ (2023). https://doi.org/10.1007/s13132-023-01558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13132-023-01558-5

Keywords

Navigation