Skip to main content
Log in

Hypothermia can reverse hepatic oxidative stress damage induced by hypoxia in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Our previous findings demonstrated that hypothermia enhances the reduction potential in the liver and helps to maintain the plasmatic antioxidant pool. Here, we aimed to elucidate if hypothermia protects against hypoxia-induced oxidative stress damage in rat liver. Several hepatic markers of oxidative stress were compared in three groups of animals (n = 8 in each group): control normothermic group ventilated with room air and two groups under extreme hypoxia (breathing 10 % O2), one kept at normothermia (HN) (37 °C) and the other under deep hypothermia (HH) (central body temperature of 21–22 °C). Hypoxia in normothermia significantly increased the levels of hepatic nitric oxide, inducible nitric oxide synthase expression, protein oxidation, Carbonilated proteins, advanced oxidation protein products, 4-hydroxynonenal (HNE) protein adducts, and lipid peroxidation when compared to the control group (p < 0.05). However, when hypoxia was induced under hypothermia, results from the oxidative stress biomarker analyses did not differ significantly from those found in the control group. Indeed, 4-HNE protein adduct amounts were significantly lower in the HH versus HN group (p < 0.05). Therefore, hypothermia can mitigate hypoxia-induced oxidative stress damage in rat liver. These effects could help clarify the mechanisms of action of therapeutic hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alia M, Horcajo C, Bravo L, Goya L (2003) Effect of grape antioxidant dietary fiber on the total antioxidant capacity and the activity of liver antioxidant enzymes in rats. Nutr Res 23:1251–1267

    Article  CAS  Google Scholar 

  2. Alva N, Azuara D, Palomeque J, Carbonell T (2013) Deep hypothermia protects against acute hypoxia in vivo in rats: a mechanism related to the attenuation of oxidative stress. Exp Physiol 98:1115–1124

    Article  CAS  PubMed  Google Scholar 

  3. Alva N, Carbonell T, Palomeque J (2010) Hypothermic protection in an acute hypoxia model in rats: acid–base and oxidant/antioxidant profiles. Resuscitation 81:609–616

    Article  CAS  PubMed  Google Scholar 

  4. Andrews P, Sinclair H, Battison C, Polderman K, Citerio G, Mascia L, Harris B, Murray G, Stocchetti N, Menon D, Shakur H, De Backer D (2011) European society of intensive care medicine study of therapeutic hypothermia (32-35 °C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials 12(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell

  6. Aydin A, Sakrak O, Yilmaz TU, Kerem M (2014) The effects of Hypericum perforatum on hepatic ischemia-reperfusion injury in rats. Bratisl Med J 115(4):209–215

    Article  CAS  Google Scholar 

  7. Bailey DM, Davies B, Young IS (2001) Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci (Lond) 101:465–475

    Article  CAS  Google Scholar 

  8. Benyo DF, Miles TM, Conrad KP (1997) Hypoxia stimulates cytokine production by villous explants from the human placenta. J Clin Endocrinol Metab 82(5):1582–1588

    CAS  PubMed  Google Scholar 

  9. Biniecka M, Kennedy A, Fearon U, Ng CT, Veale DJ, O'Sullivan JN (2010) Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint. Ann Rheum Dis 69(6):1172–1178

    Article  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  11. Cumaoglu A, Cevik C, Rackova L, Ari N, Karasu C (2007) Effects of antioxidant stobadine on protein carbonylation, advanced oxidation protein products and reductive capacity of liver in streptozotocin-diabetic rats: role of oxidative/nitrosative stress. BioFactors 30(3):171–178

    Article  CAS  PubMed  Google Scholar 

  12. Deakin CD, Nolan JP, Soar J, Sunde K, Koster R, Smith GB, Perkins GD (2010) European resuscitation council guidelines for resuscitation. Resuscitation 81:1305–1352

    Article  PubMed  Google Scholar 

  13. Englum BR, Andersen ND, Husain AM, Mathew JP, Hughes GC (2013) Degree of hypothermia in aortic arch surgery–optimal temperature for cerebral and spinal protection: deep hypothermia remains the gold standard in the absence of randomized data. Ann Cardiothorac Surg 2(2):184–193

    PubMed  PubMed Central  Google Scholar 

  14. Gutteridge JMC, Halliwell B (2000) Free radicals and antioxidants in the year 2000—a historical look to the future. New York Academy of Sciences, New York

    Google Scholar 

  15. Guzy RD, Hoyos B, Robin E, Chen H, Liu LP, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  CAS  PubMed  Google Scholar 

  16. Hirokawa F, Nakai T, Yamaue H (2002) Storage solution containing fructose-1,6-bisphosphate inhibits the excess activation of Kupffer cells in cold liver preservation. Transplantation 74(6):779–783

    Article  CAS  PubMed  Google Scholar 

  17. Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204:3133–3139

    CAS  PubMed  Google Scholar 

  18. Ichihashi K, Osawa T, Toyokuni S, Uchida K (2001) Endogenous formation of protein adducts with carcinogenic aldehydes: implications for oxidative stress. J Biol Chem 276:23903–23913

    Article  CAS  PubMed  Google Scholar 

  19. Kehrer JP, Lund LG (1994) Cellular reducing equivalents and oxidative stress. Free Radic Biol Med 17:65–75

    Article  CAS  PubMed  Google Scholar 

  20. Khaliulin I, Clarke SJ, Lin H, Parker J, Suleiman MS, Halestrap AP (2007) Temperature preconditioning of isolated rat hearts—a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. J Physiol 581:1147–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korge P, Ping PP, Weiss JN (2008) Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circ Res 103:873–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lampe JW, Becker LB (2011) State of the art in therapeuthic hypothermia. Annu Rev Med 62:79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Magalhães J, Oliveira J, Ascensão A (2009) Oxidative stress in high-altitude hypoxia. Is it truly a paradox? In: Muscle plasticity—advances in biochemical and physiological research, Ed Research Signpost. Kerala, India, pp 121–150

  24. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin H, Sarsat JP, Lerche-Langrand C, Housset C, Balladur P, Toutain H, Albaladejo V (2002) Morphological and biochemical integrity of human liver slices in long-term culture: effects of oxygen tension. Cell Biol Toxicol 18:73–85

    Article  CAS  PubMed  Google Scholar 

  26. McArthur MD, Jourdan ML, Wang LCH (1992) Prolonged stable hypothermia: effect on blood gases and pH in rats and ground squirrels. Am J Physiol Regul Integr Comp Physiol 262(2):R190–R197

    CAS  Google Scholar 

  27. Samaja M (1997) Blood gas transport at high altitude. Respiration 64:422–428

    Article  CAS  PubMed  Google Scholar 

  28. Sarcia PJ, Scumpia PO, Moldawer LL, DeMarco VG, Skimming JW (2003) Hypothermia attenuates injury in the lungs of endotoxemic rats. Shock 20:41–45

    Article  CAS  PubMed  Google Scholar 

  29. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19(4):176–182

    Article  CAS  Google Scholar 

  30. Slikker W 3rd, Desai VG, Duhart H, Feuers R, Imam SZ (2001) Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells. Free Radic Biol Med 31:405–411

    Article  CAS  PubMed  Google Scholar 

  31. Uchiyama M, Mihara M (1978) Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  32. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  33. Webste KA (2007) Hypoxia: life on the edge. Antioxid Redox Signal 9:1303–1307

    Article  Google Scholar 

  34. Wıtko-Sarsat V, Frıedlander M, TNguyen-Khoa T, Capeıllere-Blandın C, Nguyen AH, Canterloup S, Drayer JM, Jungers P, Drueke T, Deschamps-Latscha B (1998) Advanced oxidation protein products as novel mediator of inflammation and monocyte activation in chronic renal failure. J Immunol 161:2524–2532

    PubMed  Google Scholar 

  35. Witko-Sarsat V, Gausson V, Nguyen AT, Touam M, Drüeke T, Santangelo F, Descamps-Latscha B (2003) AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int 64:82–91

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi YC (2003) Lipid peroxidation and cell cycle signaling: 4 hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol 50:319–336

    CAS  PubMed  Google Scholar 

  37. Yingjun LV, Liu P, Xiang C, Yang H (2013) Oxidative stress and hypoxia observed in the kidneys of mice after a 13-week oral administration of melamine and cyanuric acid combination. Res Vet Sci 95:1100–1106

    Article  CAS  Google Scholar 

  38. Ziganshin BA, Elefteriades JA (2013) Deep hypothermic circulatory arrest. Ann Cardiothorac Surg 2(3):303–315

    PubMed  PubMed Central  Google Scholar 

  39. Zinchuk VV, Dorokhina LV, Maltsev AN (2002) Prooxidant-antioxidant balance in rats under hypothermia combined with modified hemoglobin-oxygen affinity. J Therm Biol 27(5):345–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Juana Ma. Valentín for her technical assistance. This study was supported by the Spanish ISCIII and European EDRF PI08-1389.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vicente Garnacho-Castaño.

Ethics declarations

Animal care and procedures followed the European Community guidelines. Experimental design was developed according to the protocols established by the Institutional Committee of Animal Care and Research at the University of Barcelona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnacho-Castaño, M.V., Alva, N., Sánchez-Nuño, S. et al. Hypothermia can reverse hepatic oxidative stress damage induced by hypoxia in rats. J Physiol Biochem 72, 615–623 (2016). https://doi.org/10.1007/s13105-016-0500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0500-x

Keywords

Navigation