Skip to main content

Advertisement

Log in

Molecular mechanisms by which white tea prevents oxidative stress

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The flavonoid content of tea (Camellia sinensis) has beneficial properties in the prevention of diseases. However, the mechanisms by which white tea can protect against oxidative stress remain unclear. To shed light on this issue, rats were given distilled water (controls), 0.15 mg/day (dose 1) or 0.45 mg/day (dose 2) of solid tea extract/kg body weight for 12 months. All the animals received an injection of adriamycin (ADR; 10 mg/kg body weight), except half of the control group, which were given an injection of saline solution. The expression of the nuclear factor, E2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (Nqo1), glutathione S-transferase (Gst), haem oxygenase-1 (Ho1), catalase (Cat), superoxide dismutase (Sod) and glutathione reductase (Gr) in liver was analysed by real-time PCR, and the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) was measured spectrophotometrically. ADR significantly increased the expression of Nrf2, Gst, Nqo1, Ho1, Cat, Sod and Gr with respect to the control levels and also increased the activity of CAT, SOD and GR. The intake of white tea increased in a higher degree the expression of Nrf2, Gst, Nqo1 and Ho1 in the tea + ADR group compared with the control group and C + ADR group. In addition, tea + ADR groups decreased the expression and activity of CAT, SOD and GR in a dose-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADR:

Adriamycin

ARE:

Antioxidant response element

Cat :

Catalase gene

CAT:

Catalase

ECH:

Erythroid-derived CNC (cap’n’collar) homology protein

ECG:

Epicatechin gallate

EGCG:

Epigallocatechin gallate

EGC:

Epigallocatechin

Gr :

Glutathione reductase gene

GR:

Glutathione reductase

Gst :

Glutathione S-transferase gene

GST:

Glutathione S-transferase

Keap1:

Kelch-like ECH-associated protein 1

NAD(P)H:

Nicotinamide adenine dinucleotide phosphate

NQO1:

NAD(P)H:quinone oxidoreductase 1

Nqo1 :

NAD(P)H:quinone oxidoreductase 1 gene

NRF-2:

Nuclear factor E2-related factor 2

Nrf2 :

Nuclear factor E2-related factor 2 gene

Sod :

Superoxide dismutase gene

SOD:

Superoxide dismutase

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  2. Aleksunes LM, Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathol 35:459–473

    Article  CAS  PubMed  Google Scholar 

  3. Almajano MP, Carbó R, Jiménez JAL, Gordon MH (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108:55–63

    Article  CAS  Google Scholar 

  4. Almajano MP, Vila I, Gines S (2011) Neuroprotective effects of white tea against oxidative stress-induced toxicity in striatal cells. Neurotox Res 20:372–378

    Article  CAS  PubMed  Google Scholar 

  5. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    CAS  PubMed  Google Scholar 

  6. Chen J, Yu R, Owuor ED, Kong AN (2000) Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 23:605–612

    Article  CAS  PubMed  Google Scholar 

  7. Cutts SM, Parsons PG, Sturm RA, Phillips DR (1996) Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 271:5422–5429

    Article  CAS  PubMed  Google Scholar 

  8. Espinosa C, López-Jiménez JÁ, Cabrera L et al (2012) Protective effect of white tea extract against acute oxidative injury caused by adriamycin in different tissues. Food Chem 134:1780–1785

    Article  CAS  PubMed  Google Scholar 

  9. Farombi EO, Shrotriya S, Na H-K et al (2008) Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 46:1279–1287

    Article  CAS  PubMed  Google Scholar 

  10. Fridovich I (1997) Superoxide anion radical (O · 2), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517

    Article  CAS  PubMed  Google Scholar 

  11. Galleano M, Oteiza PI, Fraga CG (2009) Cocoa, chocolate, and cardiovascular disease. Cardiovasc Pharmacol 54:483–490

    Article  CAS  Google Scholar 

  12. Goodman J, Hochstein P, Angeles L (1977) Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem Biophys Res Commun 77:797–803

    Article  CAS  PubMed  Google Scholar 

  13. Halliwell B, Gutteridge JMC (1989) Comments on review of free radicals in biology and medicine. Free Radic Biol Med 12:93–95

    Google Scholar 

  14. Kim M-J, Choi J-H, Yang J-A et al (2002) Effects of green tea catechin on enzyme activities and gene expression of antioxidative system in rat liver exposed to microwaves. Nutr Res 22:733–744

    Article  CAS  Google Scholar 

  15. Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    Article  CAS  PubMed  Google Scholar 

  16. Kong AN, Owuor E, Yu R et al (2001) Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 33:255–271

    Article  CAS  PubMed  Google Scholar 

  17. Lee J-M, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37:139–143

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Jaiswal AK (1992) Regulation of human NAD(P)H+:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem 267:15097–15104

    CAS  PubMed  Google Scholar 

  19. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  20. Mercado N, Thimmulappa R, Thomas CMR et al (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406:292–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Meewes C, Brenneisen P, Wenk J et al (2001) Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity. Free Radic Biol Med 30:238–247

    Article  CAS  PubMed  Google Scholar 

  22. Prestera T, Holtzclaw WD, Zhang Y, Talalay P (1993) Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci U S A 90:2965–2969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Qaisiya M, Coda Zabetta CD, Bellarosa C, Tiribelli C (2014) Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal 26:512–520

    Article  CAS  PubMed  Google Scholar 

  24. Rusak G, Komes D, Likic S et al (2008) Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chem 110:852–858

    Article  CAS  Google Scholar 

  25. Rushmore TH, Pickett CB (1990) Transcriptional subunit gene regulation of the rat glutathione. Characterization of a xenobiotic response element controlling inducible expression by phenolic antioxidants. J Biol Chem 265:14648–14653

    CAS  PubMed  Google Scholar 

  26. Santana-Rios G, Orner GA, Amantana A et al (2001) Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutat Res 495:61–74

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki H, Akamatsu H, Horio T (2000) Protective role of copper, zinc superoxide dismutase against UVB-induced injury of the human keratinocyte cell line HaCaT. J Investig Dermatol 114:502–507

    Article  CAS  PubMed  Google Scholar 

  28. Schimmel KJM, Richel DJ, van den Brink RBA, Guchelaar HJ (2004) Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 30:181–191

    Article  CAS  PubMed  Google Scholar 

  29. Serafini M, Bellocco R, Wolk A, Ekstrom AM (2002) Total antioxidant potential of fruit and vegetables and risk of gastric cancer. Gastroenterology 123:985–991

    Article  CAS  PubMed  Google Scholar 

  30. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki E, Yorifuji T, Takao S et al (2009) Green tea consumption and mortality among Japanese elderly people: the prospective Shizuoka elderly cohort. Ann Epidemiol 19:732–739

    Article  PubMed  Google Scholar 

  32. Wang D, Xu K, Zhong Y et al (2011) Acute and subchronic oral toxicities of Pu-erh black tea extract in Sprague–Dawley rats. J Ethnopharmacol 134:156–164

    Article  PubMed  Google Scholar 

  33. Xu W, Hellerbrand C, Köhler UA et al (2008) The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. Lab Investig 88:1068–1078

    Article  CAS  PubMed  Google Scholar 

  34. Yin X, Wu H, Chen Y, Kang YJ (1998) Induction of antioxidants by adriamycin in mouse heart. Biochem Pharmacol 56:87–93

    Article  CAS  PubMed  Google Scholar 

  35. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Ciencia y Tecnología of Spain under project AGL2005-08088-C02-01 and Beca FPU (AP2006-02642). The authors thank M. Pilar Almajano for the extract of white tea, Alberto Cuesta Peñafiel for his invaluable advice and assistance and Elvira Larqué Daza, Daniel Gonzalez Silvera and Rebeca Martinez-Tomás for their technical support.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Espinosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa, C., Pérez-Llamas, F., Guardiola, F.A. et al. Molecular mechanisms by which white tea prevents oxidative stress. J Physiol Biochem 70, 891–900 (2014). https://doi.org/10.1007/s13105-014-0357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0357-9

Keywords

Navigation