Skip to main content
Log in

Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5′-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60 % V max until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J (1974) Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest 53(4):1080–1090

    Article  PubMed  CAS  Google Scholar 

  2. Allen DG, Lamb GD, Westerblad H (2008) Impaired calcium release during fatigue. J Appl Physiol 104(1):296–305

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong R, Ianuzzo C (1977) Exercise-induced muscle glycogen depletion and repletion in diabetic rats. Life Sci 20(2):301–308

    Article  PubMed  CAS  Google Scholar 

  4. Barnes RB, Glund S, Long YC, Hjälm G, Andersson L, Zierath JR (2007) 5′AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. FASEB J 19:773–779

    Article  Google Scholar 

  5. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281(6):E1340–E1346

    PubMed  CAS  Google Scholar 

  6. Błachnio-Zabielska A, Zabielski P, Baranowski M, and Gorski J (2010) Aerobic training in rats increases skeletal muscle sphingomyelinase and serine palmitoyltransferase activity, while decreasing ceramidase activity. Lipids 46:229–238

    Google Scholar 

  7. Bruss MD, Arias EB, Lienhard GE, Cartee GD (2005) Increased phosphorylation of Akt substrate of 160 kDa [AS160] in rat skeletal muscle in response to insulin or contractile activity. Diabetes 54(1):41–50

    Article  PubMed  CAS  Google Scholar 

  8. Coven DL, Hu X, Cong L, Bergeron R, Shulman GI, Hardie DG, Young LH (2003) Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab 285:E629–E636

    PubMed  CAS  Google Scholar 

  9. Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61(1):165–172

    PubMed  CAS  Google Scholar 

  10. Dishman RK, Armstrong RB, Delp MD, Graham RE, Dunn AL (1988) Open-field behavior is not related to treadmill performance in exercising rats. Physiol Behav 43(5):541–546

    Article  PubMed  CAS  Google Scholar 

  11. Donatto FF, Prestes J, Frollini AB, Palanch AC, Verlengia R, Cavaglieri CR (2010) Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise. J Int Soc Sports Nutr 7:32

    Article  PubMed  Google Scholar 

  12. Everson Pearse AG (1960) Histochemistry: theoretical and applied. Churchill, London, pp 22–23

    Google Scholar 

  13. Fairchild TJ, Fletcher S, Steele P, Goodman C, Dawson B, Fournier PA (2002) Rapid carbohydrate loading after a short bout of near maximal-intensity exercise. Med Sci Sports Exerc 34(6):980–986

    Article  PubMed  Google Scholar 

  14. Fitzsimons D, Bodell P, Herrick R, Baldwin K (1990) Effect of thyroid state on cardiac myosin P-light chain phosphorylation during exercise. J Appl Physiol 69(1):313–320

    PubMed  CAS  Google Scholar 

  15. Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnbaum MJ, Witters LA, Thorell A, Goodyear LJ (2000) Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273(3):1150–1155

    Article  PubMed  CAS  Google Scholar 

  16. Gollnick PD, Armstrong RB, Sembrowich WL, Shepherd RE, Saltin B (1973) Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol 34(5):615–618

    PubMed  CAS  Google Scholar 

  17. Hardie D (2004) AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc 36(1):28–34

    Article  PubMed  CAS  Google Scholar 

  18. Hardin DS, Azzarelli B, Edwards J, Wigglesworth J, Maianu L, Brechtel G, Johnson A, Baron A, Garvey WT (1995) Mechanisms of enhanced insulin sensitivity in endurance-trained athletes: effects on blood flow and differential expression of GLUT 4 in skeletal muscles. J Clin Endocrinol Metab 80(8):2437–2446

    Article  PubMed  CAS  Google Scholar 

  19. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2(4):28

    Article  PubMed  Google Scholar 

  20. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47(8):1369–1373

    Article  PubMed  CAS  Google Scholar 

  21. Hayashi T, Wojtaszewski JF, Goodyear LJ (1997) Exercise regulation of glucose transport in skeletal muscle. Am J Physiol 273(6 Pt 1):E1039–E1051

    PubMed  CAS  Google Scholar 

  22. Holmes B, Kurth-Kraczek E, Winder W (1999) Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87(5):1990–1995

    PubMed  CAS  Google Scholar 

  23. Holmes BF, Sparling DP, Olson AL, Winder WW, Dohm GL (2005) Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 289(6):E1071–E1076

    Article  PubMed  CAS  Google Scholar 

  24. Idström JP, Elander A, Soussi B, Scherstén T, Bylund-Fellenius AC (1986) Influence of endurance training on glucose transport and uptake in rat skeletal muscle. Am J Physiol 251(5 Pt 2):H903–H907

    PubMed  Google Scholar 

  25. Jørgensen SB, Richter EA, Wojtaszewski JF (2006) Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol 574(Pt 1):17–31

    Article  PubMed  Google Scholar 

  26. Jorgensen S, Rose A (2008) How is AMPK activity regulated in skeletal muscles during exercise? Front Biosci 13:5589–5604

    Article  PubMed  CAS  Google Scholar 

  27. Jørgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JF, Richter EA (2007) Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 292(1):E331–E339

    Article  PubMed  Google Scholar 

  28. Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF (2004) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279(2):1070–1079

    Article  PubMed  Google Scholar 

  29. Jørgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA, Pilegaard H (2005) Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 19(9):1146–1148

    PubMed  Google Scholar 

  30. Kristiansen S, Gade J, Wojtaszewski JF, Kiens B, Richter EA (2000) Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol 89(3):1151–1158

    PubMed  CAS  Google Scholar 

  31. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370

    Article  PubMed  Google Scholar 

  32. McBride A, Ghilagaber S, Nilolaev A, Hardie DG (2009) The glycogen-binding domain on the AMPK b subunit allows the kinase to act as a glycogen sensor. Cell Metab 9:23–34

    Article  PubMed  CAS  Google Scholar 

  33. McGee SL, Hargreaves M (2004) Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle. Diabetes 53(5):1208–1214

    Article  PubMed  CAS  Google Scholar 

  34. McGee SL, Howlett KF, Starkie RL, Cameron-Smith D, Kemp BE, Hargreaves M (2003) Exercise increases nuclear AMPK α2 in human skeletal muscle. Diabetes 52:926–928

    Article  PubMed  CAS  Google Scholar 

  35. Musch T, Ghaul M, Tranchitella V, Zelis R (1990) Skeletal muscle glycogen depletion during submaximal exercise in rats with chronic heart failure. Basic Res Cardiol 85(6):606–618

    Article  PubMed  CAS  Google Scholar 

  36. Musi N, Hayashi T, Fujii N, Hirshman M, Witters L, Goodyear L (2001) AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 280(5):E677–E684

    PubMed  CAS  Google Scholar 

  37. Rosa J, Lira F, Eguchi R, Pimentel G, Venâncio D, Cunha C, Oyama L, de Mello M, Seelaender M, do Nascimento C (2011) Exhaustive exercise increases inflammatory response via Toll like receptor-4 and NF-kBp65 pathway in rat adipose tissue. J Cell Physiol 226:1604–1607

    Google Scholar 

  38. Nielsen J, Holmberg HC, Schrøder HD, Saltin B, Ortenblad N (2011) Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 589(Pt 11):2871–2885

    Article  PubMed  CAS  Google Scholar 

  39. Phillips SM, Han XX, Green HJ, Bonen A (1996) Increments in skeletal muscle GLUT-1 and GLUT-4 after endurance training in humans. Am J Physiol 270(3 Pt 1):E456–E462

    PubMed  CAS  Google Scholar 

  40. Richter EA, Jensen P, Kiens B, Kristiansen S (1998) Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training. Am J Physiol 274(1 Pt 1):E89–E95

    PubMed  CAS  Google Scholar 

  41. Richter E, Wojtaszewski J, Kristiansen S, Daugaard J, Nielsen J, Derave W, Kiens B (2001) Regulation of muscle glucose transport during exercise. Int J Sport Nutr Exerc Metab 11(Suppl):S71–S77

    PubMed  CAS  Google Scholar 

  42. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265(3 Pt 1):E380–E391

    PubMed  CAS  Google Scholar 

  43. Rosa Neto J, Lira F, Oyama L, Zanchi N, Yamashita A, Batista MJ, Oller do Nascimento C, Seelaender M (2009) Exhaustive exercise causes an anti-inflammatory effect in skeletal muscle and a pro-inflammatory effect in adipose tissue in rats. Eur J Appl Physiol 106(5):697–704

    Article  PubMed  CAS  Google Scholar 

  44. Rose A, Richter E (2005) Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology 20:260–270

    Article  PubMed  CAS  Google Scholar 

  45. Santos RVT, Caperuto EC, Costa Rosa LFBP (2006) Effects of increase of overload training on biochemical and hormonal parameters in rats. Rev Bras Med Esporte12(3):145–149

    Google Scholar 

  46. Sjorgreen B, Nordenskjold T, Holmgren H, Wollestron J (1938) Beitrag zur kentnis des lebenrhythmik. Pflugers Arch Ges Phys 240–7

  47. Steinberg GR, Kemp BE (2009) Ampk in health and disease. Physiol Rev 89:1025–1078

    Article  PubMed  CAS  Google Scholar 

  48. Sternlicht E, Barnard R, Grimditch G (1989) Exercise and insulin stimulate skeletal muscle glucose transport through different mechanisms. Am J Physiol 256(2 Pt 1):E227–E230

    PubMed  CAS  Google Scholar 

  49. Treebak JT, Glund S, Deshmukh A, Klein DK, Long YC, Jensen TE, Jørgensen SB, Viollet B, Andersson L, Neumann D, Wallimann T, Richter EA, Chibalin AV, Zierath JR, Wojtaszewski JF (2006) AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 55(7):2051–2058

    Article  PubMed  CAS  Google Scholar 

  50. Vøllestad NK, Blom PC (1985) Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand 125(3):395–405

    Article  PubMed  Google Scholar 

  51. Vøllestad NK, Tabata I, Medbø JI (1992) Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration. Acta Physiol Scand 144(2):135–141

    Article  PubMed  Google Scholar 

  52. Williams BD, Plag I, Troup J, Wolfe RR (1995) Isotopic determination of glycolytic flux during intense exercise in humans. J Appl Physiol 78(2):483–490

    PubMed  CAS  Google Scholar 

  53. Wojtaszewski JF, Birk JB, Frøsig C, Holten M, Pilegaard H, Dela F (2005) 5′AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol 564(Pt 2):563–573

    Article  PubMed  CAS  Google Scholar 

  54. Wojtaszewski J, Jørgensen S, Hellsten Y, Hardie D, Richter E (2002) Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide [AICA]-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes 51(2):284–292

    Article  PubMed  CAS  Google Scholar 

  55. Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1):221–226

    Article  PubMed  CAS  Google Scholar 

  56. Yoshimura A, Shimomura Y, Murakami T, Ichikawa M, Nakai N, Fujitsuka C, Kanematsu M, Fujitsuka N (1996) Glycogen depletion of the intrafusal fibers in a mouse muscle spindle during prolonged swimming. Am J Physiol 271(2 Pt 2):R398–R408

    PubMed  CAS  Google Scholar 

  57. Yoshimura A, Toyoda Y, Murakami T, Yoshizato H, Ando Y, Fujitsuka N (2005) Glycogen depletion in intrafusal fibres in rats during short-duration high-intensity treadmill running. Acta Physiol Scand 185(1):41–50

    Article  PubMed  CAS  Google Scholar 

  58. Zinker B, Lacy D, Bracy D, Jacobs J, Wasserman D (1993) Regulation of glucose uptake and metabolism by working muscle. An in vivo analysis. Diabetes 42(7):956–965

    Article  PubMed  CAS  Google Scholar 

  59. Zisman A, Peroni O, Abel E, Michael M, Mauvais-Jarvis F, Lowell B, Wojtaszewski J, Hirshman M, Virkamaki A, Goodyear L, Kahn C, Kahn B (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 6(8):924–928

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fundação de Amparo a Pesquisa do Estado de São Paulo and Conselho Nacional de Desenvolvimento científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. F. Tarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarini, V.A.F., Carnevali, L.C., Arida, R.M. et al. Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats. J Physiol Biochem 69, 429–440 (2013). https://doi.org/10.1007/s13105-012-0224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0224-5

Keywords

Navigation