Skip to main content
Log in

A novel autism spectrum disorder identification method: spectral graph network with brain-population graph structure joint learning

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition. Its early and accurate diagnosis is critical in enhancing the quality of life for affected individuals. Graph neural networks supply promising approaches for ASD diagnosis. However, existing works typically focus on brain-level or population-level classification methods, where the former usually disregards subjects’ non-imaging information and inter-subject relationships, and the latter generally fails to adequately evaluate and detect disease-associated brain regions and biomarkers. Furthermore, relatively static graph structures and shallow network architectures hinder the abundant extraction of information, affecting the performance of ASD identification. Accordingly, this paper proposes a new spectral graph network with brain-population graph structure joint learning (BPGLNet) for ASD diagnosis. This new framework involves two main components. Firstly, a brain-level graph learning module is designed to acquire valuable features of brain regions and identify effective biomarkers for each subject. In particular, it constructs a brain-aware representation learning network by fusing an improved graph pooling strategy and spectral graph convolution to learn subgraph structures and features of brain regions. Subsequently, based on these generated features, a population-level graph learning module is developed to capture relationships between different subjects. It builds an adaptive edge generator network by integrating non-imaging and imaging data, forming a learnable population graph. Further, this module also devises a deep cascade spectral graph network to enrich high-level feature representation of data and complete ASD identification. Experiments on the benchmark dataset reveal the state-of-the-art performance of BPGLNet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. http://fcon1000.projects.nitrc.org/indi/abide/.

References

  1. Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493(7432):327–337

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  2. Monarca I, Cibrian FL, Chavez E, Tentori M (2023) Using a small dataset to classify strength-interactions with an elastic display: A case study for the screening of autism spectrum disorder. Int J Mach Learn Cybernet 14:151–169

    Google Scholar 

  3. Arbabshirani MR, Plis S, Sui J, Calhoun VD (2017) Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145:137–165

    PubMed  Google Scholar 

  4. Geschwind DH et al (2015) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 14(11):1109–1120

    PubMed  PubMed Central  Google Scholar 

  5. Iidaka T (2015) Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 63:55–67

    PubMed  Google Scholar 

  6. Jun E, Kang E, Choi J, Suk HI (2019) Modeling regional dynamics in low-frequency fluctuation and its application to autism spectrum disorder diagnosis. NeuroImage 184:669–686

    PubMed  Google Scholar 

  7. Kam TE, Suk HI, Lee SW (2017) Multiple functional networks modeling for autism spectrum disorder diagnosis. Hum Brain Map 38(11):5804–5821

    Google Scholar 

  8. Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D, Thirion B, Varoquaux G (2017) Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example. NeuroImage 147:736–745

    PubMed  Google Scholar 

  9. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    PubMed  Google Scholar 

  10. Suk HI, Wee CY, Lee SW, Shen D (2016) State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129:292–307

    PubMed  Google Scholar 

  11. Liu Y, He L, Cao B, Yu P, Ragin A, Leow A (2018) Multi-view multi-graph embedding for brain network clustering analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 117–124

  12. Huang H, Hu X, Zhao Y, Makkie M, Dong Q, Zhao S, Guo L, Liu T (2018) Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans Med Imaging 37(7):1551–1561

    PubMed  Google Scholar 

  13. Dvornek NC, Ventola P, Pelphrey KA, Duncan JS (2017) Identifying autism from resting-state fMRI using long short-term memory networks. In: Proceedings of the 8th International Workshop on Machine Learning in Medical Imaging, pp 362–370

  14. Saini R, Kumar P, Kaur B, Roy PP, Dogra DP, Santosh K (2019) Kinect sensor-based interaction monitoring system using the BLSTM neural network in healthcare. Int J Mach Learn Cybernet 10:2529–2540

    CAS  Google Scholar 

  15. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage: clinical 17:16–23

    PubMed  Google Scholar 

  16. Li H, Parikh NA, He L (2018) A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci 12:491

    PubMed  PubMed Central  Google Scholar 

  17. Huang ZA, Zhu Z, Yau CH, Tan KC (2021) Identifying autism spectrum disorder from resting-state fMRI using deep belief network. IEEE Trans Neural Netw Learn Syst 32(7):2847–2861

    PubMed  Google Scholar 

  18. Deng X, Zhang J, Liu R, Liu K (2022) Classifying asd based on time-series fMRI using spatial-temporal transformer. Comput Biol Med 151:106320

    PubMed  Google Scholar 

  19. Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC (2023) Spatial-temporal co-attention learning for diagnosis of mental disorders from resting-state fMRI data. IEEE Trans Neural Netw Learn Syst Early Access. https://doi.org/10.1109/TNNLS.2023.3243000

    Article  Google Scholar 

  20. Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24

    MathSciNet  PubMed  Google Scholar 

  21. Huang C, Li M, Cao F, Fujita H, Li Z, Wu X (2023) Are graph convolutional networks with random weights feasible? IEEE Trans Pattern Anal Mach Intell 45(3):2751–2768

    PubMed  Google Scholar 

  22. Liu S, Li T, Ding H, Tang B, Wang X, Chen Q, Yan J, Zhou Y (2020) A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction. Int J Mach Learn Cybernet 11:2849–2856

    Google Scholar 

  23. Zhao X, Wu J, Peng H, Beheshti A, Monaghan JJ, McAlpine D, Hernandez-Perez H, Dras M, Dai Q, Li Y et al (2022) Deep reinforcement learning guided graph neural networks for brain network analysis. Neural Netw 154:56–67

    PubMed  Google Scholar 

  24. Song P, Li J, Fan H, Fan L (2023) DBCGN: Dual branch cascade graph network for skin lesion segmentation. Int J Mach Learn Cybernet 14:2847–2865

    Google Scholar 

  25. Yang C, Wang P, Tan J, Liu Q, Li X (2021) Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks. Comput Biol Med 139:104963

    PubMed  Google Scholar 

  26. Cao P, Wen G, Li L, Liu X, Yang J, Zaiane O (2021) Temporal graph representation learning for autism spectrum disorder brain networks. In: Proceedings of 2021 IEEE International Conference on Bioinformatics and Biomedicine, pp 1270–1275

  27. Liu L, Wen G, Cao P, Hong T, Yang J, Zhang X, Zaiane OR (2023) BrainTGL: A dynamic graph representation learning model for brain network analysis. Comput Biol Med 153:106521

    PubMed  Google Scholar 

  28. Wen G, Cao P, Bao H, Yang W, Zheng T, Zaiane O (2022) MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput Biol Med 142:105239

    PubMed  Google Scholar 

  29. Yang W, Wen G, Cao P, Yang J, Zaiane OR (2022) Collaborative learning of graph generation, clustering and classification for brain networks diagnosis. Comput Methods Programs Biomed 219:106772

    PubMed  Google Scholar 

  30. Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, Rueckert D (2018) Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Med Image Anal 48:117–130

    PubMed  Google Scholar 

  31. Kazi A, Shekarforoush S, Arvind Krishna S, Burwinkel H, Vivar G, Kortüm K, Ahmadi SA, Albarqouni S, Navab N (2019) InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Proceedings of the 26th international conference on information processing in medical imaging, pp 73–85

  32. Zhang B, Guo X, Lin Q, Wang H, Xu S (2022) Counterfactual inference graph network for disease prediction. Knowled-Based Syst 255:109722

    Google Scholar 

  33. Huang Y, Chung AC (2022) Disease prediction with edge-variational graph convolutional networks. Med Image Anal 77:102375

    PubMed  Google Scholar 

  34. Zheng S, Zhu Z, Liu Z, Guo Z, Liu Y, Yang Y, Zhao Y (2022) Multi-modal graph learning for disease prediction. IEEE Trans Med Imag 41(9):2207–2216

    ADS  Google Scholar 

  35. Jiang H, Cao P, Xu M, Yang J, Zaiane O (2020) Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput Biol Med 127:104096

    PubMed  Google Scholar 

  36. Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations

  37. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems, pp 3844–3852

  38. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning, pp 807–814

  39. Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J, Scheinost D, Staib LH, Ventola P, Duncan JS (2021) BrainGNN: Interpretable brain graph neural network for fMRI analysis. Med Image Anal 74:102233

  40. Zhang Z, Bu J, Ester M, Zhang J, Li Z, Yao C, Dai H, Yu Z, Wang C (2023) Hierarchical multi-view graph pooling with structure learning. IEEE Trans Knowl Data Eng 35(1):545–559

    Google Scholar 

  41. Martins A, Astudillo R (2016) From softmax to sparsemax: A sparse model of attention and multi-label classification. In: Proceedings of International Conference on Machine Learning, pp 1614–1623

  42. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of international conference on machine learning, pp 448–456

  43. Chen M, Wei Z, Huang Z, Ding B, Li Y (2020) Simple and deep graph convolutional networks. In: Proceedings of International Conference on Machine Learning, pp 1725–1735

  44. Craddock C, Sikka S, Cheung B, Khanuja R, Ghosh SS, Yan C, Li Q, Lurie D, Vogelstein J, Burns R et al (2013) Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). Front Neuroinform 42:10–3389

    Google Scholar 

  45. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980

    PubMed  Google Scholar 

  46. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: International Conference on Learning Representations

  47. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1026–1034

  48. Carrington AM, Manuel DG, Fieguth P, Ramsay TO, Osmani V, Wernly B, Bennett C, Hawken S, Magwood O, Sheikh Y et al (2023) Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation. IEEE Trans Pattern Anal Mach Intell 45(1):329–341

    PubMed  Google Scholar 

  49. Yang L, Xu Z (2019) Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning. Int J Mach Learn Cybernet 10:591–601

    CAS  Google Scholar 

  50. Maaten LVD, Hinton GE (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  51. Xia M, Wang J, He Y (2013) BrainNet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7):e68910

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  52. Doyle-Thomas KA, Lee W, Foster NE, Tryfon A, Ouimet T, Hyde KL, Evans AC, Lewis J, Zwaigenbaum L, Anagnostou E et al (2015) Atypical functional brain connectivity during rest in autism spectrum disorders. Ann Neurol 77(5):866–876

    PubMed  Google Scholar 

  53. Abraham A, Milham MP, Martino AD, Craddock RC, Samaras D, Thirion B, Varoquaux G (2016) Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147:736–745

    PubMed  Google Scholar 

  54. Linke AC, Keehn RJJ, Pueschel EB, Fishman I, Müller RA (2017) Children with ASD show links between aberrant sound processing, social symptoms, and atypical auditory interhemispheric and thalamocortical functional connectivity. Dev Cognit Neurosci 29:117–126

    Google Scholar 

  55. Shahamat H, Abadeh MS (2020) Brain MRI analysis using a deep learning based evolutionary approach. Neural Netw 126:218–234

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12071369 and 62176244, the Key Industry Innovation Chain (Group) of Shaanxi Province under Grant No. 2019ZDLSF02-09-02, and the Shaanxi Fundamental Science Research Project for Mathematics and Physics under Grant No. 22JSZ008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, D., Zhang, R. et al. A novel autism spectrum disorder identification method: spectral graph network with brain-population graph structure joint learning. Int. J. Mach. Learn. & Cyber. 15, 1517–1532 (2024). https://doi.org/10.1007/s13042-023-01980-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01980-w

Keywords

Navigation