Skip to main content

Advertisement

Log in

Type I Interferon Signalling and Ischemic Stroke: Mechanisms and Therapeutic Potentials

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Type I interferon (IFN-I) signalling is intricately involved in the pathogenesis of multiple infectious diseases, autoimmune diseases, and neurological diseases. Acute ischemic stroke provokes overactivation of IFN-I signalling within the injured brain, particularly in microglia. Following cerebral ischemia, damage-associated molecular patterns (DAMPs) released from injured neural cells elicit marked proinflammatory episodes within minutes. Among these, self-nucleic acids, including nuclear DNA and mitochondrial DNA (mtDNA), have been recognized as a critical alarm signal to fan the flames of neuroinflammation, predominantly via inducing IFN-I signalling activation in microglia. The concept of interferon-responsive microglia (IRM), marked by upregulation of a plethora of IFN-stimulated genes, has been emergingly elucidated in ischemic mouse brains, particularly in aged ones. Among the pattern recognition receptors responsible for IFN-I induction, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) plays integral roles in potentiating microglia-driven neuroinflammation and secondary brain injury after cerebral ischemia. Here, we aim to provide an up-to-date review on the multifaceted roles of IFN-I signalling, the detailed molecular and cellular mechanisms leading to and resulting from aberrant IFN-I signalling activation after cerebral ischemia, and the therapeutic potentials. A thorough exploration of these above points will inform our quest for IFN-based therapies as effective immunomodulatory therapeutics to complement the limited repertoire of thrombolytic agents, thereby facilitating the translation from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Johnson CO, Nguyen M, Roth GA, Nichols E, Alam T, Abate D, et al. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–58.

    Article  Google Scholar 

  2. Cui P, McCullough LD, Hao J. Brain to periphery in acute ischemic stroke: mechanisms and clinical significance. Front Neuroendocrinol. 2021;63:100932.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Role of DAMPs and of leukocytes infiltration in ischemic stroke: insights from animal models and translation to the human disease. Cell Mol Neurobiol. 2022;42:545–56.

    Article  CAS  PubMed  Google Scholar 

  4. Singh V, Roth S, Veltkamp R, Liesz A. HMGB1 as a key mediator of immune mechanisms in ischemic stroke. Antioxid Redox Signal. 2016;24:635–51.

    Article  CAS  PubMed  Google Scholar 

  5. Kim SW, Davaanyam D, Seol SI, Lee HK, Lee H, Lee JK. Adenosine triphosphate accumulated following cerebral ischemia induces neutrophil extracellular trap formation. Int J Mol Sci. 2020;21:7688.

  6. Li Q, Cao Y, Dang C, Han B, Han R, Ma H, et al. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med. 2020;12:e11002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kong L, Li W, Chang E, Wang W, Shen N, Xu X, et al. mtDNA-STING axis mediates microglial polarization via IRF3/NF-κB signaling after ischemic stroke. Front Immunol. 2022;13:860977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang GL, Yang XL, Zhou HJ, Long J, Liu B, Zhang LM, et al. cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke. Brain Res Bull. 2021;171:183–95.

    Article  CAS  PubMed  Google Scholar 

  9. Fischer S, Nasyrov E, Brosien M, Preissner KT, Marti HH, Kunze R. Self-extracellular RNA promotes pro-inflammatory response of astrocytes to exogenous and endogenous danger signals. J Neuroinflammation. 2021;18:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer S, Gerriets T, Wessels C, Walberer M, Kostin S, Stolz E, et al. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood. 2007;110:2457–65.

    Article  CAS  PubMed  Google Scholar 

  11. Sharp FR, Zhan X, Liu DZ. Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res. 2013;4:685–92.

    Article  CAS  PubMed  Google Scholar 

  12. Tan PH, Ji J, Hsing CH, Tan R, Ji RR. Emerging roles of type-I interferons in neuroinflammation, Neurological Diseases, and Long-Haul COVID. Int J Mol Sci. 2022;23:14394.

  13. McDonough A, Lee RV, Noor S, Lee C, Le T, Iorga M, et al. Ischemia/reperfusion induces interferon-stimulated gene expression in microglia. J Neurosci. 2017;37:8292–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arbaizar-Rovirosa M, Pedragosa J, Lozano JJ, Casal C, Pol A, Gallizioli M, et al. Aged lipid-laden microglia display impaired responses to stroke. EMBO Mol Med. 2023;15:e17175.

    Article  CAS  PubMed  Google Scholar 

  15. Androvic P, Kirdajova D, Tureckova J, Zucha D, Rohlova E, Abaffy P, et al. Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep. 2020;31:107777.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Guo Y, Li R, Huang T, Li Y, Xie W, et al. Novel CH25H(+) and OASL(+) microglia subclusters play distinct roles in cerebral ischemic stroke. J Neuroinflammation. 2023;20:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Field R, Campion S, Warren C, Murray C, Cunningham C. Systemic challenge with the TLR3 agonist poly I: C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun. 2010;24:996–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roy ER, Chiu G, Li S, Propson NE, Kanchi R, Wang B, et al. Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid β plaques. Immunity. 2022;55:879-894.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roy ER, Wang B, Wan YW, Chiu G, Cole A, Yin Z, et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Invest. 2020;130:1912–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C. Sala Frigerio, L. Wolfs, N. Fattorelli, N. Thrupp, I. Voytyuk, I. Schmidt, et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques, Cell Reports. 2019;27:1293–1306.e6.

  21. Wang S, Mustafa M, Yuede CM, Salazar SV, Kong P, Long H, et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J Exp Med. 2020;217:e20200785.

  22. Udeochu JC, Amin S, Huang Y, Fan L, Torres ERS, Carling GK, et al. Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience. Nat Neurosci. 2023;26:737–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11:6129.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50:253-271.e6.

    Article  CAS  PubMed  Google Scholar 

  25. Dong Y, D’Mello C, Pinsky W, Lozinski BM, Kaushik DK, Ghorbani S, et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat Neurosci. 2021;24:489–503.

    Article  CAS  PubMed  Google Scholar 

  26. Kaya T, Mattugini N, Liu L, Ji H, Cantuti-Castelvetri L, Wu J, et al. CD8(+) T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat Neurosci. 2022;25:1446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng K, Lin L, Jiang W, Chen L, Zhang X, Zhang Q, et al. Single-cell RNA-seq reveals the transcriptional landscape in ischemic stroke. J Cereb Blood Flow Metab. 2022;42:56–73.

    Article  CAS  PubMed  Google Scholar 

  28. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15:87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen Q, Li J, Zhang Z, Guo S, Wang Q, An X, et al. COVID-19: systemic pathology and its implications for therapy. Int J Biol Sci. 2022;18:386–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzzi S, Tsitsou-Kampeli A, Schwartz M. The type I interferon antiviral response in the choroid plexus and the cognitive risk in COVID-19. Nat Immunol. 2023;24:220–4.

    Article  CAS  PubMed  Google Scholar 

  31. Cai C, Tang YD, Xu G, Zheng C. The crosstalk between viral RNA- and DNA-sensing mechanisms. Cell Mol Life Sci. 2021;78:7427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21:548–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lukhele S, Boukhaled GM, Brooks DG. Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin Immunol. 2019;43:101277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang M, Downes CE, Wong CHY, Brody KM, Guio-Agulair PL, Gould J, et al. Type-I interferon signalling through IFNAR1 plays a deleterious role in the outcome after stroke. Neurochem Int. 2017;108:472–80.

    Article  CAS  PubMed  Google Scholar 

  35. Costello DA, Lynch MA. Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-β. Hippocampus. 2013;23:696–707.

    Article  CAS  PubMed  Google Scholar 

  36. Cox DJ, Field RH, Williams DG, Baran M, Bowie AG, Cunningham C, et al. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia. 2015;63:812–25.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Furr SR, Chauhan VS, Moerdyk-Schauwecker MJ, Marriott I. A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. J Neuroinflammation. 2011;8:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Furr SR, Chauhan VS, Sterka D Jr, Grdzelishvili V, Marriott I. Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus. J Neurovirol. 2008;14:503–13.

    Article  CAS  PubMed  Google Scholar 

  39. Kallfass C, Ackerman A, Lienenklaus S, Weiss S, Heimrich B, Staeheli P. Visualizing production of beta interferon by astrocytes and microglia in brain of La Crosse virus-infected mice. J Virol. 2012;86:11223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. G.M. Welch, C.A. Boix, E. Schmauch, J. Davila-Velderrain, M.B. Victor, V. Dileep, et al. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. Sci Adv. 2022;8:eabo4662.

  41. Liao Y, Cheng J, Kong X, Li S, Li X, Zhang M, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics. 2020;10:9644–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, et al. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood. 2021;138:91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, et al. Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci. 2009;29:9839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cui G, Ye X, Zuo T, Zhao H, Zhao Q, Chen W, et al. Chloroquine pretreatment inhibits toll-like receptor 3 signaling after stroke. Neurosci Lett. 2013;548:101–4.

    Article  CAS  PubMed  Google Scholar 

  46. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature. 2018;560:198–203.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peng J, Wang H, Gong Z, Li X, He L, Shen Q, et al. Idebenone attenuates cerebral inflammatory injury in ischemia and reperfusion via dampening NLRP3 inflammasome activity. Mol Immunol. 2020;123:74–87.

    Article  CAS  PubMed  Google Scholar 

  48. Han W, Pu H, Li S, Liu Y, Zhao Y, Xu M, et al. Targeted ablation of signal transducer and activator of transduction 1 alleviates inflammation by microglia/macrophages and promotes long-term recovery after ischemic stroke. J Neuroinflammation. 2023;20:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gallizioli M, Miró-Mur F, Otxoa-de-Amezaga A, Cugota R, Salas-Perdomo A, Justicia C, et al. Dendritic cells and microglia have non-redundant functions in the inflamed brain with protective effects of type 1 cDCs. Cell Rep. 2020;33:108291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harmon E, Doan A, Bautista-Garrido J, Jung JE, Marrelli SP, Kim GS. Increased expression of interferon-induced transmembrane 3 (IFITM3) in stroke and other inflammatory conditions in the brain. Int J Mol Sci. 2022;23:8885.

  51. Cui P, Lu W, Wang J, Wang F, Zhang X, Hou X, et al. Microglia/macrophages require vitamin D signaling to restrain neuroinflammation and brain injury in a murine ischemic stroke model. J Neuroinflammation. 2023;20:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science. 2014;346:89–93.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A, et al. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat Commun. 2017;8:717.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  54. Glück S, Guey B, Gulen MF, Wolter K, Kang TW, Schmacke NA, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol. 2017;19:1061–70.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Victorelli S, Salmonowicz H, Chapman J, Martini H, Vizioli MG, Riley JS, et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature. 2023;622:627–36.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goldmann T, Blank T, Prinz M. Fine-tuning of type I IFN-signaling in microglia–implications for homeostasis CNS autoimmunity and interferonopathies. Curr Opin Neurobiol. 2016;36:38–42.

    Article  CAS  PubMed  Google Scholar 

  57. Hosseini S, Michaelsen-Preusse K, Grigoryan G, Chhatbar C, Kalinke U, Korte M. Type I interferon receptor signaling in astrocytes regulates hippocampal synaptic plasticity and cognitive function of the healthy CNS. Cell Rep. 2020;31:107666.

    Article  CAS  PubMed  Google Scholar 

  58. Derfuss T, Mehling M, Papadopoulou A, Bar-Or A, Cohen JA, Kappos L. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurol. 2020;19:336–47.

    Article  CAS  PubMed  Google Scholar 

  59. Liu H, Xin L, Chan BP, Teoh R, Tang BL, Tan YH. Interferon-beta administration confers a beneficial outcome in a rabbit model of thromboembolic cerebral ischemia. Neurosci Lett. 2002;327:146–8.

    Article  CAS  PubMed  Google Scholar 

  60. Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries HE, Schepers J, et al. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab. 2003;23:1029–39.

    Article  CAS  PubMed  Google Scholar 

  61. Kuo PC, Scofield BA, Yu IC, Chang FL, Ganea D, Yen JH. Interferon-β modulates inflammatory response in cerebral ischemia. J Am Heart Assoc. 2016;5:e002610.

  62. Kuo PC, Weng WT, Scofield BA, Furnas D, Paraiso HC, Intriago AJ, et al. Interferon-β alleviates delayed tPA-induced adverse effects via modulation of MMP3/9 production in ischemic stroke. Blood Adv. 2020;4:4366–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuo PC, Weng WT, Scofield BA, Paraiso HC, Bojrab P, Kimes B, et al. Interferon-β modulates microglial polarization to ameliorate delayed tPA-exacerbated brain injury in ischemic stroke. Front Immunol. 2023;14:1148069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hamner MA, Ye Z, Lee RV, Colman JR, Le T, Gong DC, et al. Ischemic preconditioning in white matter: magnitude and mechanism. J Neurosci. 2015;35:15599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, et al. Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci. 2011;31:8456–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maier CM, Yu F, Nishi T, Lathrop SJ, Chan PH. Interferon-beta fails to protect in a model of transient focal stroke. Stroke. 2006;37:1116–9.

    Article  CAS  PubMed  Google Scholar 

  67. Inácio AR, Liu Y, Clausen BH, Svensson M, Kucharz K, Yang Y, et al. Endogenous IFN-β signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J Neuroinflammation. 2015;12:211.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li L, Qin JJ, Guo S, Zhang P, Gong J, Zhang XJ, et al. Attenuation of cerebral ischemic injury in interferon regulatory factor 3-deficient rat. J Neurochem. 2016;136:871–83.

    Article  CAS  PubMed  Google Scholar 

  69. Gullotta GS, De Feo D, Friebel E, Semerano A, Scotti GM, Bergamaschi A, et al. Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology. Nat Immunol. 2023;24:925–40.

    Article  CAS  PubMed  Google Scholar 

  70. Nakka VP, Lang BT, Lenschow DJ, Zhang DE, Dempsey RJ, Vemuganti R. Increased cerebral protein ISGylation after focal ischemia is neuroprotective. J Cereb Blood Flow Metab. 2011;31:2375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. N. Kundu, A. Kumar, C. Corona, Y. Chen, S. Seth, S.S. Karuppagounder, et al. A STING agonist preconditions against ischaemic stroke via an adaptive antiviral Type 1 interferon response, Brain Commun. 2022;4:fcac133.

Download references

Funding

This review was supported by the National Natural Science Foundation of China (Grant U1904207 and 91849115 to YX) and the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (Grant 2020PT31001 to YX).

Author information

Authors and Affiliations

Authors

Contributions

The central concept of this review was proposed by YX, ZX, and PC. PC and BS outlined the manuscript. PC was responsible for the comprehensive literature search for references and contributed to drafting the manuscript, creating the figures, and organizing the tables. BS was involved in the critical revision of the manuscript. YX and ZX were responsible for the final revision and overall content. The submission was approved by all authors.

Corresponding authors

Correspondence to Zongping Xia or Yuming Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, P., Song, B., Xia, Z. et al. Type I Interferon Signalling and Ischemic Stroke: Mechanisms and Therapeutic Potentials. Transl. Stroke Res. (2024). https://doi.org/10.1007/s12975-024-01236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-024-01236-x

Keywords

Navigation