Skip to main content

Advertisement

Log in

Role of Cyclooxygenase-2 in Relation to Nitric Oxide and Endothelin-1 on Pathogenesis of Cerebral Vasospasm After Subarachnoid Hemorrhage in Rabbit

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Endothelial dysfunctions that include decreased nitric oxide (NO) bioactivity and increased endothelin-1 (ET-1) bioactivity have been considered to be involved in the pathogenesis of cerebral vasospasm (CVS) after aneurysmal subarachnoid hemorrhage (SAH). Recent cardiovascular studies have revealed that cyclooxygenase-2 (COX-2) is involved in a disturbance in cross-talk between NO and ET-1. COX-2 expression was detected in the endothelial cells of a spastic artery after experimental SAH; however, the pathophysiological significance of COX-2 in relation to CVS remains unclear. The aim of this study was to investigate the role of COX-2 in relation to NO and ET-1 in the pathogenesis of CVS by using the COX-2 selective inhibitor, celecoxib. In the SAH group, SAH was simulated using the double-hemorrhage rabbit model. In the celecoxib group, SAH was simulated and celecoxib was administered. The basilar artery was extracted on day 5 and examined. The cross-section area of the basilar artery in the celecoxib group was significantly larger than in the SAH group. An increased expression of COX-2, ET-1, and ETA receptor (ETAR), and a decreased expression of endothelial NO synthase (eNOS) were seen in the SAH group. In the celecoxib group compared to the SAH group, expression of COX-2, ET-1, and ETAR were statistically significantly decreased, and eNOS expression was significantly increased. COX-2 might be involved in the pathogenesis of CVS due to up-regulation of ET-1 and ETAR and down-regulation of eNOS, and celecoxib may potentially serve as an agent in the prevention of CVS after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tso MK, Macdonald RL. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl Stroke Res. 2014;5:174–89.

    Article  PubMed  Google Scholar 

  2. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4:432–46.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Suzuki H. What is early brain injury? Transl Stroke Res. 2015;6:1–3.

    Article  PubMed  Google Scholar 

  4. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang JH. Vascular neural network in subarachnoid hemorrhage. Transl Stroke Res. 2014;5:423–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li Q, Khatibi N, Zhang JH. Vascular neural network: the importance of vein drainage in stroke. Transl Stroke Res. 2014;5:163–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Etminan N. Aneurysmal subarachnoid hemorrhage—status quo and perspective. Transl Stroke Res. 2015;6:167–70.

    Article  PubMed  Google Scholar 

  8. Weidauer S, Lanfermann H, Raabe A, Zanella F, Seifert V, Beck J. Impairment of cerebral perfusion and infarct patterns attributable to vasospasm after aneurysmal subarachnoid hemorrhage: a prospective MRI and DSA study. Stroke. 2007;38:1831–6.

    Article  PubMed  Google Scholar 

  9. Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer SA, et al. Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke. 2011;42:919–23.

    Article  PubMed  Google Scholar 

  10. Brathwaite S, Macdonald RL. Current management of delayed cerebral ischemia: update from results of recent clinical trials. Transl Stroke Res. 2014;5:207–26.

    Article  CAS  PubMed  Google Scholar 

  11. Maeda Y, Tani E, Miyamoto T. Prostaglandin metabolism in experimental cerebral vasospasm. J Neurosurg. 1981;55:779–85.

    Article  CAS  PubMed  Google Scholar 

  12. Sasaki T, Murota SI, Wakai S, Asano T, Sano K. Evaluation of prostaglandin biosynthetic activity in canine basilar artery following subarachnoid injection of blood. J Neurosurg. 1981;55:771–8.

    Article  CAS  PubMed  Google Scholar 

  13. Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A. 1991;88:2692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Osuka K, Suzuki Y, Watanabe Y, Takayasu M, Yoshida J. Inducible cyclooxygenase expression in canine basilar artery after experimental subarachnoid hemorrhage. Stroke. 1998;29:1219–22.

    Article  CAS  PubMed  Google Scholar 

  15. Tran Dinh YR, Jomaa A, Callebert J, Reynier-Rebuffel AM, Tedgui A, Savarit A, et al. Overexpression of cyclooxygenase-2 in rabbit basilar artery endothelial cells after subarachnoid hemorrhage. Neurosurgery. 2001;48:626–33.

    Article  CAS  PubMed  Google Scholar 

  16. Desjardins F, Aubin MC, Carrier M, Perrault LP. Decrease of endothelin recepter subtype ETB and release of COX-derived products contribute to endothelial dysfunction of porcine epicardial coronary arteries in left ventricular hypertrophy. J Cardiovasc Pharmacol. 2005;45:499–508.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Mitra S, Varadharaj S, Parinandi N, Zweier JL, Flavahan NA. Increased expression of cyclooxygenase-2 mediates enhanced contraction to endothelin ETA receptor stimulation in endothelial nitric oxide synthase knockout mice. Circ Res. 2006;98:1439–45.

    Article  CAS  PubMed  Google Scholar 

  18. Hink U, Munzel T. COX-2, another important player in the nitric oxide-endothelin cross-talk : good news for COX-2 inhibitor? Circ Res. 2006;98:1344–6.

    Article  CAS  PubMed  Google Scholar 

  19. Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Neurol Res. 2006;28:730–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kikkawa Y, Kurogi R, Sasaki T. The single and double blood injection rabbit subarachnoid hemorrhage model. Transl Stroke Res. 2015;6:88–97.

    Article  CAS  PubMed  Google Scholar 

  21. Mori K. Double cisterna magna blood injection model of experimental subarachnoid hemorrhage in dogs. Transl Stroke Res. 2014;5:647–52.

    Article  CAS  PubMed  Google Scholar 

  22. Wahn H, Wolf J, Kram F, Frantz S, Wagner JA. The endocannabinoid arachidonyl ethanolamide (anandamide) increases pulmonary arterial pressure via cyclooxygenase-2 products in isolated rabbit lungs. Am J Physiol Heart Circ Physiol. 2005;289:2491–6.

    Article  Google Scholar 

  23. Boiti C, Guelfi G, Brecchia G, Dall’Aglio C, Ceccarelli P, Maranesi M, et al. Role of the endothelin-1 system in the luteolytic process of pseudopregnant rabbits. Endocrinology. 2005;146:1293–300.

    Article  CAS  PubMed  Google Scholar 

  24. Boiti C, Zampini D, Guelfi G, Paolocci F, Zerani M, Gobbetti A. Expression patterns of endothelial and inducible nitric oxide synthase isoforms in corpora lutea of pseudopregnant rabbits at different luteal stages. J Endocrinol. 2002;173:285–96.

    Article  CAS  PubMed  Google Scholar 

  25. Chen M, Kakutani M, Minami M, Kataoka H, Kume N, Narumiya S, et al. Increased expression of lectin-like oxidized low density lipoprotein receptor-1 in initial atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 2000;20:1107–15.

    Article  CAS  PubMed  Google Scholar 

  26. Xin X, Majumder M, Girish GV, Mohindra V, Maruyama T, Lala PK. Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Lab Investig. 2012;92:1115–28.

    Article  CAS  PubMed  Google Scholar 

  27. Burleigh ME, Babaev VR, Yancey PG, Major AS, McCaleb JL, Oates JA, et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in apoE-deficient and C57BL/6 mice. J Mol Cell Cardiol. 2005;39:443–52.

    Article  CAS  PubMed  Google Scholar 

  28. Jacobs S, Laury-Kleintop L, Lanza-Jacoby S. The select cyclooxygenase-2 inhibitor celecoxib reduced the extent of atherosclerosis in apo E−/− mice. J Surg Res. 2008;146:135–42.

    Article  Google Scholar 

  29. Hino A, Tokuyama Y, Weir B, Takeda J, Yano H, Bell GI, et al. Changes in endothelial nitric oxide synthase mRNA during vasospasm after subarachnoid hemorrhage in monkeys. Neurosurgery. 1996;39:562–7.

    CAS  PubMed  Google Scholar 

  30. Santhanam AV, Smith LA, Akiyama M, Rosales AG, Bailey KR, Katusic ZS. Role of endothelial no synthase phosphorylation in cerebrovascular protective effect of recombinant erythropoietin during subarachnoid hemorrhage-induced cerebral vasospasm. Stroke. 2005;36:2731–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kasuya H, Weir BK, Nakane M, Pollock JS, Johns L, Marton LS, et al. Nitric oxide synthase and guanylate cyclase levels in canine basilar arteries after subarachnoid hemorrhage. J Neurosurg. 1995;82:250–5.

    Article  CAS  PubMed  Google Scholar 

  32. Sabri M, Ai J, Knight B, Tariq A, Jeon H, Shang X, et al. Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2010;31:190–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neuschmelting V, Marbacher S, Fathi AR, Jakob SM, Fandino J. Elevated level of endothelin-1 in cerebrospinal fluid and lack of nitric oxide in basilar arterial plasma associated with cerebral vasospasm after subarachnoid haemorrhage in rabbits. Acta Neurochir (Wien). 2009;151:795–801.

    Article  Google Scholar 

  34. Kästner S, Oertel MF, Scharbrodt W, Krause M, Böker DK, Deinsberger W. Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir (Wien). 2005;147:1271–9.

    Article  Google Scholar 

  35. Ohkuma H, Parney I, Megyesi J, Ghahary A, Findlay JM. Antisense preproendothelin-oligoDNA therapy for vasospasm in a canine model of subarachnoid hemorrhage. J Neurosurg. 1999;90:1105–14.

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann M, Seifert V. Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery. 1998;43:863–75.

    Article  CAS  PubMed  Google Scholar 

  37. Juvela S. Plasma endothelin concentrations after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;92:390–400.

    Article  CAS  PubMed  Google Scholar 

  38. Xie A, Aihara Y, Bouryi VA, Nikitina E, Jahromi BS, Zhang ZD, et al. Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2007;27:1692–701.

    Article  CAS  PubMed  Google Scholar 

  39. Itoh S, Sasaki T, Asai A, Kuchino Y. Prevention of delayed vasospasm by an endothelin ETA receptor antagonist, BQ-123: change of ETA receptor mRNA expression in a canine subarachnoid hemorrhage model. J Neurosurg. 1994;81:759–64.

    Article  CAS  PubMed  Google Scholar 

  40. Sproviero D, Julien S, Burford B, Taylor-Papadimitriou J, Burchell JM. Cyclooxygenase-2 enzyme induces the expression of the α-2,3-sialyltransferase-3 (ST3Gal-I) in breast cancer. J Biol Chem. 2012;287:44490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vivaldi A, Ciampi R, Tacito A, Molinaro E, Agate L, Bottici V, et al. Celecoxib, a cyclooxygenase-2 inhibitor, potentiates the chemotherapic effect of vinorelbine in the medullary thyroid cancer TT cell line. Mol Cell Endocrinol. 2012;355:41–8.

    Article  CAS  PubMed  Google Scholar 

  42. Mukherjee K, Gitlin JM, Loftin CD. Effectiveness of cyclooxygenase-2 inhibition in limiting abdominal aortic aneurysm progression in mice correlates with a differentiated smooth muscle cell phenotype. J Cardiovasc Pharmacol. 2012;60:520–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ohkuma H, Tsurutani H, Suzuki S. Changes of beta-actin mRNA expression in canine vasospastic basilar artery after experimental subarachnoid hemorrhage. Neurosci Lett. 2001;311:9–12.

    Article  CAS  PubMed  Google Scholar 

  44. Shimamura N, Ohkuma H. Phenotypic transformation of smooth muscle in vasospasm after aneurysmal subarachnoid hemorrhage. Transl Stroke Res. 2014;5:357–64.

    Article  CAS  PubMed  Google Scholar 

  45. Hald ES, Alford PW. Smooth muscle phenotype switching in blast traumatic brain injury-induced cerebral vasospasm. Transl Stroke Res. 2014;5:385–93.

    Article  PubMed  Google Scholar 

  46. Edvinsson L, Larsen SS, Maddahi A, Nielsen J. Plasticity of cerebrovascular smooth muscle cells after subarachnoid hemorrhage. Transl Stroke Res. 2014;5:365–76.

    Article  CAS  PubMed  Google Scholar 

  47. Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005;352:1071–80.

    Article  CAS  PubMed  Google Scholar 

  48. Arber N, Eagle CJ, Spicak J, Rácz I, Dite P, Hajer J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006;355:885–95.

    Article  CAS  PubMed  Google Scholar 

  49. ADAPT Research Group. Cardiovascular and cerebrovascular events in the randomized, controlled Alzheimer’s Disease Anti-Inflammatory Prevention Trial (ADAPT). PLoS Clin Trials. 2006;1, e33.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ohkuma.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munakata, A., Naraoka, M., Katagai, T. et al. Role of Cyclooxygenase-2 in Relation to Nitric Oxide and Endothelin-1 on Pathogenesis of Cerebral Vasospasm After Subarachnoid Hemorrhage in Rabbit. Transl. Stroke Res. 7, 220–227 (2016). https://doi.org/10.1007/s12975-016-0466-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0466-6

Keywords

Navigation