Skip to main content

Advertisement

Log in

Correlating Cerebral 18FDG PET-CT Patterns with Histological Analysis During Early Brain Injury in a Rat Subarachnoid Hemorrhage Model

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Early brain injury (EBI) plays a significant role in poor outcomes for subarachnoid hemorrhage (SAH) patients. Further investigations are required to characterize the cellular metabolic and related histological changes that may contribute to EBI following SAH. We investigated the image patterns of 18-fluorodeoxyglucose positron emission tomography-computed tomography (18FDG PET-CT) during EBI and correlated histopathological changes utilizing a rat SAH model. SAH was induced in six adult male Sprague-Dawley rats by endovascular perforation, and animals were randomly assigned to receive 18FDG PET-CT imaging at either 3 or 12 h post-procedure. Mean 18FDG standard uptake value (SUV) of the brain was calculated. Animals were euthanized 48 h post-procedure, and brain samples were used for heme oxygenase-1 (HO-1) and dopamine- and cAMP-regulated phosphoprotein (DARPP-32) Mr 32 kDa immunohistochemistry. Rats within the SAH group had higher mean whole brain 18FDG SUV (2.349 ± 0.376 g/ml in the 3-h group and 2.453 ± 0.495 g/ml in the 12-h group) compared to that of sham (n = 3; mean SUV = 2.030 ± 0.247 g/ml; P < 0.05) or control groups (n = 3; mean SUV = 1.800 ± 0.484 g/ml; P < 0.05). Whole brain 18FDG SUV did not vary significantly between rats imaged at 3 h vs. those imaged at 12 h post-SAH (P > 0.05). Regions of decreasing SUV in SAH rats correlated with neuronal death and increased expression of HO-1. Higher 18FDG PET SUV was evident in rats post-SAH compared to sham and control groups. Regions of decreasing SUV in SAH rats correlated with neuronal death and increased HO-1 expression as evaluated by histopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke. 2009;40(3 Suppl):S86–7.

    Article  PubMed Central  Google Scholar 

  2. Carpenter DA, Grubb Jr RL, Tempel LW, Powers WJ. Cerebral oxygen metabolism after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1991;11(5):837–44.

    Article  CAS  Google Scholar 

  3. Coles JP. Imaging after brain injury. Br J Anaesth. 2007;99(1):49–60.

    Article  CAS  Google Scholar 

  4. Dwyer BE, Nishimura RN, De Vellis J, Yoshida T. Heme oxygenase is a heat shock protein and PEST protein in rat astroglial cells. Glia. 1992;5(4):300–5.

    Article  CAS  Google Scholar 

  5. Ferro JM, Canhao P, Peralta R. Update on subarachnoid haemorrhage. J Neurol. 2008;255(4):465–79.

    Article  Google Scholar 

  6. Friedrich B, Muller F, Feiler S, Scholler K, Plesnila N. Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab. 2012;32(3):447–55.

    Article  CAS  PubMed Central  Google Scholar 

  7. Frykholm P, Andersson JL, Langstrom B, Persson L, Enblad P. Haemodynamic and metabolic disturbances in the acute stage of subarachnoid haemorrhage demonstrated by PET. Acta Neurol Scand. 2004;109(1):25–32.

    Article  CAS  Google Scholar 

  8. Germano A, d'Avella D, Imperatore C, Caruso G, Tomasello F. Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir (Wien). 2000;142(5):575–81.

    Article  CAS  Google Scholar 

  9. Hayashi T, Suzuki A, Hatazawa J, Kanno I, Shirane R, Yoshimoto T, et al. Cerebral circulation and metabolism in the acute stage of subarachnoid hemorrhage. J Neurosurg. 2000;93(6):1014–8.

    Article  CAS  Google Scholar 

  10. Jin H, Xi G, Keep RF, Wu J, Hua Y. DARPP-32 to quantify intracerebral hemorrhage-induced neuronal death in basal ganglia. Transl Stroke Res. 2013;4(1):130–4.

    Article  CAS  PubMed Central  Google Scholar 

  11. Kuroki M, Kanamaru K, Suzuki H, Waga S, Semba R. Effect of vasospasm on heme oxygenases in a rat model of subarachnoid hemorrhage. Stroke. 1998;29(3):683–9.

    Article  CAS  Google Scholar 

  12. Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30(11):1793–803.

    Article  CAS  PubMed Central  Google Scholar 

  13. Lee JY, Sagher O, Keep R, Hua Y, Xi G. Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery. 2009;65(2):331–43.

    Article  Google Scholar 

  14. Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR. Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res Mol Brain Res. 1996;37(1–2):201–8.

    Article  CAS  Google Scholar 

  15. Novak L, Emri M, Balkay L, Szabo S, Rozsa L, Molnar P. [FDG-PET-scan in subarachnoid hemorrhage]. Orv Hetil. 2002;143(21 Suppl 3):1308–10.

    Google Scholar 

  16. Novak L, Emri M, Molnar P, Balkay L, Szabo S, Rozsa L, et al. Regional cerebral (18)FDG uptake during subarachnoid hemorrhage induced vasospasm. Neurol Res. 2006;28(8):864–70.

    Article  Google Scholar 

  17. Okubo S, Strahle J, Keep RF, Hua Y, Xi G. Subarachnoid hemorrhage-induced hydrocephalus in rats. Stroke. 2013;44(2):547–50.

    Article  PubMed Central  Google Scholar 

  18. Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43(1):27–40.

    Article  CAS  PubMed Central  Google Scholar 

  19. Sharp FR, Zhan X, Liu DZ. Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res. 2013;4(6):685–92.

    Article  CAS  Google Scholar 

  20. Sobrado M, Delgado M, Fernandez-Valle E, Garcia-Garcia L, Torres M, Sanchez-Prieto J, et al. Longitudinal studies of ischemic penumbra by using 18 F-FDG PET and MRI techniques in permanent and transient focal cerebral ischemia in rats. Neuroimage. 2011;57(1):45–54.

    Article  CAS  Google Scholar 

  21. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34.

    Article  PubMed Central  Google Scholar 

  22. Turner CP, Panter SS, Sharp FR. Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Brain Res Mol Brain Res. 1999;65(1):87–102.

    Article  CAS  Google Scholar 

  23. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    Article  Google Scholar 

  24. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke. 1999;30(6):1247–55.

    Article  CAS  Google Scholar 

  25. Yan FHQ, Chen J, Wu C, Gu C, Chen G. Progesterone attenuates early brain injury after subarachnoid hemorrhage in rats. Neurosci Lett. 2013;24(543):163–7.

    Article  Google Scholar 

  26. Zhou Y, Martin RD, Zhang JH. Advances in experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt 1):15–21.

    Google Scholar 

Download references

Conflict of Interest

The authors have no conflicts of interest to report pertaining to the materials or methods used in this study or the findings specified in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya S. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Li, P., Chaudhary, N. et al. Correlating Cerebral 18FDG PET-CT Patterns with Histological Analysis During Early Brain Injury in a Rat Subarachnoid Hemorrhage Model. Transl. Stroke Res. 6, 290–295 (2015). https://doi.org/10.1007/s12975-015-0396-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0396-8

Keywords

Navigation