Skip to main content
Log in

Brainstem Opioidergic System Is Involved in Early Response to Experimental SAH

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a form of stroke with high rates of mortality and permanent disability for patients who survive the initial event. Previous research has focused on delayed cerebral vasospasm of large conduit arteries as the cause of poor long-term outcomes after SAH. New evidence suggests that acute failure to restore cerebral blood flow (CBF) after SAH may be setting the stage for delayed ischemic neurological deficits. Our lab previously demonstrated that the rostral ventromedial medulla (RVM), an autonomic and sensorimotor integration center, is important for maintaining CBF after experimental SAH. In this study, we have demonstrated that ablation of μ-opioid receptor containing cells with dermorphin conjugates in the RVM results in a high mortality rate after experimental SAH and, in survivors, causes a dramatic decrease in CBF. Further, locally blocking the μ-opioid receptor with the antagonist naltrexone attenuated the reduction in CBF secondary to experimental SAH. Saturating μ-opioid receptors with the agonist [d-Ala(2),NMe-Phe(4),Gly-ol(5)]-encephalin (DAMGO) had no effect. Taken together, these results suggest that SAH activates opioidergic signaling in the RVM with a resultant reduction in CBF. Further, cells in the RVM that contain μ-opioid receptors are important for survival after acute SAH. We propose that failure of the RVM μ-opioid receptor cells to initiate the compensatory CBF response sets the stage for acute and delayed ischemic injury following SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Spears J, MacDonald R, Loch D, Weir B. Perioperative management of subarachnoid hemorrhage. In: Winn HR, editor. Youman’s neurological surgery. Philadelphia: Elsevier; 2011. p. 3772–90.

    Chapter  Google Scholar 

  2. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.

    Article  PubMed  Google Scholar 

  3. Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3(5):256–63.

    Article  CAS  PubMed  Google Scholar 

  4. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    Article  PubMed  Google Scholar 

  5. Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97(1):14–37.

    Article  PubMed Central  PubMed  Google Scholar 

  6. de Rooij NK, Greving JP, Rinkel GJ, Frijns CJ. Early prediction of delayed cerebral ischemia after subarachnoid hemorrhage: development and validation of a practical risk chart. Stroke; J Cereb Circ. 2013;44(5):1288–94.

    Article  Google Scholar 

  7. Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, et al. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke; J Cereb Circ. 2002;33(1):200–8.

    Article  Google Scholar 

  8. Heuer GG, Smith MJ, Elliott JP, Winn HR, LeRoux PD. Relationship between intracranial pressure and other clinical variables in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101(3):408–16.

    Article  PubMed  Google Scholar 

  9. Siler DA, Gonzalez JA, Wang RK, Cetas JS, Alkayed NJ. Intracisternal administration of tissue plasminogen activator improves cerebrospinal fluid flow and cortical perfusion after subarachnoid hemorrhage in mice. Transl Stroke Res. 2014;5(2):227–37.

    Article  CAS  PubMed  Google Scholar 

  10. Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115C:64–91.

    Article  Google Scholar 

  11. Hinson HE, Sheth KN. Manifestations of the hyperadrenergic state after acute brain injury. Curr Opin Crit Care. 2012;18(2):139–45.

    Article  PubMed  Google Scholar 

  12. Moussouttas M, Huynh TT, Khoury J, Lai EW, Dombrowski K, Pello S, et al. Cerebrospinal fluid catecholamine levels as predictors of outcome in subarachnoid hemorrhage. Cerebrovasc Dis. 2012;33(2):173–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Golanov EV, Reis DJ. Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel medullary area. Brain Res. 2001;892(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Golanov EV, Christensen JR, Reis DJ. Neurons of a limited subthalamic area mediate elevations in cortical cerebral blood flow evoked by hypoxia and excitation of neurons of the rostral ventrolateral medulla. J Neurosci: Off J Soc Neurosci. 2001;21(11):4032–41.

    CAS  Google Scholar 

  15. Zhou P, Qian L, Glickstein SB, Golanov EV, Pickel VM, Reis DJ. Electrical stimulation of cerebellar fastigial nucleus protects rat brain, in vitro, from staurosporine-induced apoptosis. J Neurochem. 2001;79(2):328–38.

    Article  CAS  PubMed  Google Scholar 

  16. Golanov EV, Zhou P. Neurogenic neuroprotection. Cell Mol Neurobiol. 2003;23(4–5):651–63.

    Article  PubMed  Google Scholar 

  17. Cetas JS, Lee DR, Alkayed NJ, Wang R, Iliff JJ, Heinricher MM. Brainstem control of cerebral blood flow and application to acute vasospasm following experimental subarachnoid hemorrhage. Neuroscience. 2009;163(2):719–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cohen Z, Molinatti G, Hamel E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1997;17(8):894–904.

    Article  CAS  Google Scholar 

  19. Toussay X, Basu K, Lacoste B, Hamel E. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J Neurosci: Off J Soc Neurosci. 2013;33(8):3390–401.

    Article  CAS  Google Scholar 

  20. Barbelivien A, Noel C, MacKenzie ET, Dauphin F. Cerebrovascular evidence for a GABAergic modulation of the cholinergic vasodilatatory basalocortical system in the rat. Brain Res. 1999;834(1–2):223–7.

    Article  CAS  PubMed  Google Scholar 

  21. Nozaki K, Boccalini P, Moskowitz MA. Expression of c-fos-like immunoreactivity in brainstem after meningeal irritation by blood in the subarachnoid space. Neuroscience. 1992;49(3):669–80.

    Article  CAS  PubMed  Google Scholar 

  22. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–38.

    Article  CAS  PubMed  Google Scholar 

  23. Heinricher MM, Fields HL. Central nervous system mechanisms of pain modulation. In: McMahon S, Koltzenburg M, Tracey I, Turk DC, editors. Wall and Melzack’s textbook of pain. 6th ed. London: Elsevier; 2013. p. 129–42.

    Google Scholar 

  24. Haws CM, Heinricher MM, Fields HL. Alpha-adrenergic receptor agonists, but not antagonists, alter the tail-flick latency when microinjected into the rostral ventromedial medulla of the lightly anesthetized rat. Brain Res. 1990;533(2):192–5.

    Article  CAS  PubMed  Google Scholar 

  25. Heinricher MM, Kaplan HJ. GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the lightly anesthetized rat. Pain. 1991;47(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  26. Prunell GF, Mathiesen T, Svendgaard NA. A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport. 2002;13(18):2553–6.

    Article  PubMed  Google Scholar 

  27. Arttamangkul S, Alvarez-Maubecin V, Thomas G, Williams JT, Grandy DK. Binding and internalization of fluorescent opioid peptide conjugates in living cells. Mol Pharmacol. 2000;58(6):1570–80.

    CAS  PubMed  Google Scholar 

  28. Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol. 2012;108(9):2393–404.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Heinricher MM, Morgan MM, Tortorici V, Fields HL. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience. 1994;63(1):279–88.

    Article  CAS  PubMed  Google Scholar 

  30. Fields HL, Heinricher MM. Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond Ser B Biol Sci. 1985;308(1136):361–74.

    Article  CAS  Google Scholar 

  31. Strack AM, Sawyer WB, Platt KB, Loewy AD. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res. 1989;491(2):274–96.

    Article  CAS  PubMed  Google Scholar 

  32. Sugawara T, Ayer R, Jadhav V, Zhang JH. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008;167(2):327–34.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Vera-Portocarrero LP, Zhang ET, Ossipov MH, Xie JY, King T, Lai J, et al. Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization. Neuroscience. 2006;140(4):1311–20.

    Article  CAS  PubMed  Google Scholar 

  34. Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5(7):565–75.

    Article  CAS  PubMed  Google Scholar 

  35. Weir BK. Pulmonary edema following fatal aneurysm rupture. J Neurosurg. 1978;49(4):502–7.

    Article  CAS  PubMed  Google Scholar 

  36. Hansen-Schwartz J, Ansar S, Edvinsson L. Cerebral vasoconstriction after subarachnoid hemorrhage—role of changes in vascular receptor phenotype. Front Biosci. 2008;13:2160–4.

    Article  CAS  PubMed  Google Scholar 

  37. Henderson LA, Keay KA, Bandler R. Hypotension following acute hypovolaemia depends on the caudal midline medulla. Neuroreport. 1998;9(8):1839–44.

    Article  CAS  PubMed  Google Scholar 

  38. Henderson LA, Keay KA, Bandler R. Caudal midline medulla mediates behaviourally-coupled but not baroreceptor-mediated vasodepression. Neuroscience. 2000;98(4):779–92.

    Article  CAS  PubMed  Google Scholar 

  39. Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2006;26(11):1341–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Seksiri Arttamangkul, Vollum Institute, and Mary Heinricher, OHSU.

Conflict of Interest

Justin S. Cetas, Robin McFarlane, Kassi Kronfeld, Phoebe Smitasin, Jesse J. Liu, and Jeffrey S. Raskin declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin S. Cetas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetas, J.S., McFarlane, R., Kronfeld, K. et al. Brainstem Opioidergic System Is Involved in Early Response to Experimental SAH. Transl. Stroke Res. 6, 140–147 (2015). https://doi.org/10.1007/s12975-014-0378-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0378-2

Keywords

Navigation