Skip to main content

Advertisement

Log in

Chromatin-Modifying Agents for Epigenetic Reprogramming and Endogenous Neural Stem Cell-Mediated Repair in Stroke

  • Review
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The recent explosion of interest in epigenetics and chromatin biology has made a significant impact on our understanding of the pathophysiology of cerebral ischemia and led to the identification of new treatment strategies for stroke, such as those that employ histone deacetylase inhibitors. These are key advances; however, the rapid pace of discovery in chromatin biology and innovation in the development of chromatin-modifying agents implies there are emerging classes of drugs that may also have potential benefits in stroke. Herein, we discuss how various chromatin regulatory factors and their recently identified inhibitors may serve as drug targets and therapeutic agents for stroke, respectively. These factors primarily include members of the repressor element-1 silencing transcription factor (REST)/neuron-restrictive silencer factor macromolecular complex, polycomb group (PcG) proteins, and associated chromatin remodeling factors, which have been linked to the pathophysiology of cerebral ischemia. Further, we suggest that, because of the key roles played by REST, PcG proteins and other chromatin remodeling factors in neural stem and progenitor cell (NSPC) biology, chromatin-modifying agents can be utilized not only to mitigate ischemic injury directly but also potentially to promote endogenous NSPC-mediated brain repair mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol. 2008;86(4):305–41.

    Article  CAS  PubMed  Google Scholar 

  2. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.

    Article  CAS  PubMed  Google Scholar 

  3. Stapels M, Piper C, Yang T, Li M, Stowell C, Xiong ZG, et al. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal. 2010;3(111):15.

    Article  Google Scholar 

  4. Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke. 2009;40(8):2899–905.

    Article  CAS  PubMed  Google Scholar 

  5. Sleiman SF, Basso M, Mahishi L, Kozikowski AP, Donohoe ME, Langley B, et al. Putting the ‘HAT’ back on survival signalling: the promises and challenges of HDAC inhibition in the treatment of neurological conditions. Expert Opin Investig Drugs. 2009;18(5):573–84.

    Article  CAS  PubMed  Google Scholar 

  6. Kim HJ, Leeds P, Chuang DM. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem. 2009;110(4):1226–40.

    Article  CAS  PubMed  Google Scholar 

  7. Hirabayashi Y, Gotoh Y. Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci. 2010;11(6):377–88.

    Article  CAS  PubMed  Google Scholar 

  8. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  9. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  10. Cairns BR. The logic of chromatin architecture and remodelling at promoters. Nature. 2009;461(7261):193–8.

    Article  CAS  PubMed  Google Scholar 

  11. Zlatanova J, Thakar A. H2A.Z: view from the top. Structure. 2008;16(2):166–79.

    Article  CAS  PubMed  Google Scholar 

  12. Lan F, Shi Y. Epigenetic regulation: methylation of histone and non-histone proteins. Sci China C Life Sci. 2009;52(4):311–22.

    Article  CAS  PubMed  Google Scholar 

  13. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, et al. p53 is regulated by the lysine demethylase LSD1. Nature. 2007;449(7158):105–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol. 2007;8(12):983–94.

    Article  CAS  PubMed  Google Scholar 

  15. Otto SJ, McCorkle SR, Hover J, Conaco C, Han JJ, Impey S, et al. A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J Neurosci. 2007;27(25):6729–39.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316(5830):1497–502.

    Article  CAS  PubMed  Google Scholar 

  17. Mortazavi A, Leeper Thompson EC, Garcia ST, Myers RM, Wold B. Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genome Res. 2006;16(10):1208–21.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson R, Teh CH, Jia H, Vanisri RR, Pandey T, Lu ZH, et al. Regulation of neural macroRNAs by the transcriptional repressor REST. RNA. 2009;15(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  19. Wu J, Xie X. Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol. 2006;7(9):R85.

    Article  PubMed  Google Scholar 

  20. Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, et al. CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA. 1999;96(17):9873–8.

    Article  CAS  PubMed  Google Scholar 

  21. Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF. REST and CoREST modulate neuronal subtype specification, maturation and maintenance. PLoS ONE. 2009;4(12):e7936.

    Article  PubMed  Google Scholar 

  22. Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF. Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLoS ONE. 2009;4(11):e7665.

    Article  PubMed  Google Scholar 

  23. Qureshi IA, Mehler MF. Regulation of non-coding RNA networks in the nervous system—what’s the REST of the story? Neurosci Lett. 2009;466(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  24. Formisano L, Noh KM, Miyawaki T, Mashiko T, Bennett MV, Zukin RS. Ischemic insults promote epigenetic reprogramming of mu opioid receptor expression in hippocampal neurons. Proc Natl Acad Sci USA. 2007;104(10):4170–5.

    Article  CAS  PubMed  Google Scholar 

  25. Calderone A, Jover T, Noh KM, Tanaka H, Yokota H, Lin Y, et al. Ischemic insults derepress the gene silencer REST in neurons destined to die. J Neurosci. 2003;23(6):2112–21.

    CAS  PubMed  Google Scholar 

  26. Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, et al. SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature. 2008;452(7185):370–4.

    Article  CAS  PubMed  Google Scholar 

  27. Mulligan P, Westbrook TF, Ottinger M, Pavlova N, Chang B, Macia E, et al. CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation. Mol Cell. 2008;32(5):718–26.

    Article  CAS  PubMed  Google Scholar 

  28. Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T, et al. Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature. 2008;452(7185):365–9.

    Article  CAS  PubMed  Google Scholar 

  29. Su X, Gopalakrishnan V, Stearns D, Aldape K, Lang FF, Fuller G, et al. Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol Cell Biol. 2006;26(5):1666–78.

    Article  CAS  PubMed  Google Scholar 

  30. Majumder S. REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle. 2006;5(17):1929–35.

    Article  CAS  PubMed  Google Scholar 

  31. Blom T, Tynninen O, Puputti M, Halonen M, Paetau A, Haapasalo H, et al. Molecular genetic analysis of the REST/NRSF gene in nervous system tumors. Acta Neuropathol. 2006;112(4):483–90.

    Article  CAS  PubMed  Google Scholar 

  32. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, et al. A genetic screen for candidate tumor suppressors identifies REST. Cell. 2005;121(6):837–48.

    Article  CAS  PubMed  Google Scholar 

  33. Fuller GN, Su X, Price RE, Cohen ZR, Lang FF, Sawaya R, et al. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol Cancer Ther. 2005;4(3):343–9.

    CAS  PubMed  Google Scholar 

  34. Coulson JM. Transcriptional regulation: cancer, neurons and the REST. Curr Biol. 2005;15(17):R665–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lawinger P, Venugopal R, Guo ZS, Immaneni A, Sengupta D, Lu W, et al. The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat Med. 2000;6(7):826–31.

    Article  CAS  PubMed  Google Scholar 

  36. Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet. 2009;469(9):598–606.

    Article  Google Scholar 

  37. Ding N, Zhou H, Esteve PO, Chin HG, Kim S, Xu X, et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell. 2008;31(3):347–59.

    Article  CAS  PubMed  Google Scholar 

  38. Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature. 2007;447(7144):601–5.

    Article  CAS  PubMed  Google Scholar 

  39. Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006;79(2):370–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bassuk AG, Wallace RH, Buhr A, Buller AR, Afawi Z, Shimojo M, et al. A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet. 2008;83(5):572–81.

    Article  CAS  PubMed  Google Scholar 

  41. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, et al. 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci. 2006;9(11):1382–7.

    Article  CAS  PubMed  Google Scholar 

  42. Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M. Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res. 2006;66(18):9009–16.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YZ, Zhang QH, Ye H, Zhang Y, Luo YM, Ji XM, et al. Distribution of lysine-specific demethylase 1 in the brain of rat and its response in transient global cerebral ischemia. Neurosci Res. 2010;68(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  44. Fish JE, Yan MS, Matouk CC, St Bernard R, Ho JJ, Gavryushova A, et al. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem. 2010;285(2):810–26.

    Article  CAS  PubMed  Google Scholar 

  45. Zager RA, Johnson AC. Renal ischemia-reperfusion injury upregulates histone-modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes. Am J Physiol Renal Physiol. 2009;296(5):F1032–41.

    Article  CAS  PubMed  Google Scholar 

  46. Wang F, Zhang R, Beischlag TV, Muchardt C, Yaniv M, Hankinson O. Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. J Biol Chem. 2004;279(45):46733–41.

    Article  CAS  PubMed  Google Scholar 

  47. Xi Q, He W, Zhang XH, Le HV, Massague J. Genome-wide impact of the BRG1 SWI/SNF chromatin remodeler on the transforming growth factor beta transcriptional program. J Biol Chem. 2008;283(2):1146–55.

    Article  CAS  PubMed  Google Scholar 

  48. Tuttolomondo A, Di Raimondo D, di Sciacca R, Pinto A, Licata G. Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des. 2008;14(33):3574–89.

    Article  CAS  PubMed  Google Scholar 

  49. Sie MP, Uitterlinden AG, Bos MJ, Arp PP, Breteler MM, Koudstaal PJ, et al. TGF-beta 1 polymorphisms and risk of myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;37(11):2667–71.

    Article  CAS  PubMed  Google Scholar 

  50. Peng G, Yim EK, Dai H, Jackson AP, Burgt I, Pan MR, et al. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol. 2009;11(7):865–72.

    Article  CAS  PubMed  Google Scholar 

  51. Li P, Hu X, Gan Y, Gao Y, Liang W, Chen J. Mechanistic insight into DNA damage and repair in ischemic stroke—exploiting the BER pathway as a model of neuroprotection. Antioxid Redox Signal. 2010;(in press).

  52. Mandel S, Gozes I. Activity-dependent neuroprotective protein constitutes a novel element in the SWI/SNF chromatin remodeling complex. J Biol Chem. 2007;282(47):34448–56.

    Article  CAS  PubMed  Google Scholar 

  53. Kumral A, Yesilirmak DC, Sonmez U, Baskin H, Tugyan K, Yilmaz O, et al. Neuroprotective effect of the peptides ADNF-9 and NAP on hypoxic–ischemic brain injury in neonatal rats. Brain Res. 2006;1115(1):169–78.

    Article  CAS  PubMed  Google Scholar 

  54. Dekanty A, Romero NM, Bertolin AP, Thomas MG, Leishman CC, Perez-Perri JI, et al. Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia. PLoS Genet. 2010;6(6):e1000994.

    Article  PubMed  Google Scholar 

  55. Rigamonti D, Mutti C, Zuccato C, Cattaneo E, Contini A. Turning REST/NRSF dysfunction in Huntington’s disease into a pharmaceutical target. Curr Pharm Des. 2009;15(34):3958–67.

    Article  CAS  PubMed  Google Scholar 

  56. Leone S, Mutti C, Kazantsev A, Sturlese M, Moro S, Cattaneo E, et al. SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorg Med Chem. 2008;16(10):5695–703.

    Article  CAS  PubMed  Google Scholar 

  57. Rigamonti D, Bolognini D, Mutti C, Zuccato C, Tartari M, Sola F, et al. Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators. J Biol Chem. 2007;282(34):24554–62.

    Article  CAS  PubMed  Google Scholar 

  58. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol. 2005;1(3):143–5.

    Article  CAS  PubMed  Google Scholar 

  59. Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell. 2007;25(3):473–81.

    Article  CAS  PubMed  Google Scholar 

  60. Liu F, Chen X, Allali-Hassani A, Quinn AM, Wasney GA, Dong A, et al. Discovery of a 2, 4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J Med Chem. 2009;52(24):7950–3.

    Article  CAS  PubMed  Google Scholar 

  61. Liu F, Chen X, Allali-Hassani A, Quinn AM, Wigle TJ, Wasney GA, et al. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2, 4-diamino-7-aminoalkoxy-quinazolines. J Med Chem. 2010;53(15):5844–57.

    Article  CAS  PubMed  Google Scholar 

  62. Lee MG, Wynder C, Schmidt DM, McCafferty DG, Shiekhattar R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol. 2006;13(6):563–7.

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt DM, McCafferty DG. trans-2-Phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry. 2007;46(14):4408–16.

    Article  CAS  PubMed  Google Scholar 

  64. Culhane JC, Wang D, Yen PM, Cole PA. Comparative analysis of small molecules and histone substrate analogues as LSD1 lysine demethylase inhibitors. J Am Chem Soc. 2010;132(9):3164–76.

    Article  CAS  PubMed  Google Scholar 

  65. Mimasu S, Umezawa N, Sato S, Higuchi T, Umehara T, Yokoyama S. Structurally designed trans-2-phenylcyclopropylamine derivatives potently inhibit histone demethylase LSD1/KDM1. Biochemistry. 2010;49(30):6494–503.

    Article  CAS  PubMed  Google Scholar 

  66. Huang Y, Marton LJ, Woster PM, Casero RA. Polyamine analogues targeting epigenetic gene regulation. Essays Biochem. 2009;46:95–110.

    Article  CAS  PubMed  Google Scholar 

  67. Huang Y, Stewart TM, Wu Y, Baylin SB, Marton LJ, Perkins B, et al. Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res. 2009;15(23):7217–28.

    Article  CAS  PubMed  Google Scholar 

  68. Herz HM, Shilatifard A. The JARID2-PRC2 duality. Genes Dev. 2010;24(9):857–61.

    Article  CAS  PubMed  Google Scholar 

  69. Chatoo W, Abdouh M, David J, Champagne MP, Ferreira J, Rodier F, et al. The polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity. J Neurosci. 2009;29(2):529–42.

    Article  CAS  PubMed  Google Scholar 

  70. Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 2010;6(4):e1000899.

    Article  PubMed  Google Scholar 

  71. Popov N, Gil J. Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics. 2010;5(8). (in press)

  72. Thillainadesan G, Isovic M, Loney E, Andrews J, Tini M, Torchia J. Genome analysis identifies the p15ink4b tumor suppressor as a direct target of the ZNF217/CoREST complex. Mol Cell Biol. 2008;28(19):6066–77.

    Article  CAS  PubMed  Google Scholar 

  73. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 2008;4(10):e1000242.

    Article  PubMed  Google Scholar 

  74. Zukin RS. Eradicating the mediators of neuronal death with a fine-tooth comb. Sci Signal. 2010;3(125):pe20.

    Article  PubMed  Google Scholar 

  75. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    Article  CAS  PubMed  Google Scholar 

  76. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007;21(9):1050–63.

    Article  CAS  PubMed  Google Scholar 

  77. Dimri M, Bommi PV, Sahasrabuddhe AA, Khandekar JD, Dimri GP. Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carcinogenesis. 2010;31(3):489–95.

    Article  CAS  PubMed  Google Scholar 

  78. Niemoller TD, Bazan NG. Docosahexaenoic acid neurolipidomics. Prostaglandins Other Lipid Mediat. 2010;91(3–4):85–9.

    Article  CAS  PubMed  Google Scholar 

  79. Ansari KI, Hussain I, Das HK, Mandal SS. Overexpression of human histone methylase MLL1 upon exposure to a food contaminant mycotoxin, deoxynivalenol. FEBS J. 2009;276(12):3299–307.

    Article  CAS  PubMed  Google Scholar 

  80. Tariq M, Nussbaumer U, Chen Y, Beisel C, Paro R. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc Natl Acad Sci USA. 2009;106(4):1157–62.

    Article  CAS  PubMed  Google Scholar 

  81. Karatas H, Townsend EC, Bernard D, Dou Y, Wang S. Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1-WDR5 interaction. J Med Chem. 2010;53(14):5179–85.

    Article  CAS  PubMed  Google Scholar 

  82. Qu Q, Shi Y. Neural stem cells in the developing and adult brains. J Cell Physiol. 2009;221(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  83. Burns TC, Verfaillie CM, Low WC. Stem cells for ischemic brain injury: a critical review. J Comp Neurol. 2009;515(1):125–44.

    Article  PubMed  Google Scholar 

  84. Leker RR. Fate and manipulations of endogenous neural stem cells following brain ischemia. Expert Opin Biol Ther. 2009;9(9):1117–25.

    Article  CAS  PubMed  Google Scholar 

  85. Kernie SG, Parent JM. Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis. 2010;37(2):267–74.

    Article  PubMed  Google Scholar 

  86. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA. 2004;101(47):16659–64.

    Article  CAS  PubMed  Google Scholar 

  87. Yu IT, Park JY, Kim SH, Lee JS, Kim YS, Son H. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology. 2009;56(2):473–80.

    Article  CAS  PubMed  Google Scholar 

  88. Sun G, Alzayady K, Stewart R, Ye P, Yang S, Li W, et al. Histone demethylase LSD1 regulates neural stem cell proliferation. Mol Cell Biol. 2010;30(8):1997–2005.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Guan Y, Wang F, Huang A, Wang S, Zhang YA. Bmi-1 regulates self-renewal, proliferation and senescence of human fetal neural stem cells in vitro. Neurosci Lett. 2010;476(2):74–8.

    Article  CAS  PubMed  Google Scholar 

  90. Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from post-natal neural stem cells. Nature. 2009;458(7237):529–33.

    Article  CAS  PubMed  Google Scholar 

  91. Sher F, Rossler R, Brouwer N, Balasubramaniyan V, Boddeke E, Copray S. Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells. 2008;26(11):2875–83.

    Article  CAS  PubMed  Google Scholar 

  92. Li W, Ding S. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci. 2010;31(1):36–45.

    Article  PubMed  Google Scholar 

  93. Rishton GM. Small molecules that promote neurogenesis in vitro. Recent Pat CNS Drug Discov. 2008;3(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  94. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3(5):568–74.

    Article  CAS  PubMed  Google Scholar 

  95. American Association for Cancer Research Human Epigenome Task Force; European Union, Network of Excellence, Scientific Advisory Board. Moving AHEAD with an international human epigenome project. Nature 2008;454(7205):711–5.

    Google Scholar 

Download references

Acknowledgments

M.F.M. is supported by grants from the National Institutes of Health (NS38902, MH66290, NS071571), as well as by the Roslyn and Leslie Goldstein, the Mildred and Bernard H. Kayden, the F. M. Kirby, and the Alpern Family Foundations.

Financial and competing interests disclosure

The authors have no financial and competing interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Mehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, I.A., Mehler, M.F. Chromatin-Modifying Agents for Epigenetic Reprogramming and Endogenous Neural Stem Cell-Mediated Repair in Stroke. Transl. Stroke Res. 2, 7–16 (2011). https://doi.org/10.1007/s12975-010-0051-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-010-0051-3

Keywords

Navigation