Skip to main content
Log in

Imaging assessment of bioresorbable vascular scaffolds

  • Review Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

Vascular reparative therapy has become a reality with bioresorbable scaffolds (BRSs). To assess acute and long-term performance of the device, multimodality imaging would be essential. Radiopacity of metal hinders the imaging assessment, whereas radiolucent polymeric scaffolds allow for a precise imaging assessment with either invasive or non-invasive modality at baseline and at follow-up, which is one of the advantages of polymeric BRSs. Recent large trials evaluating clinical results of the first-generation BRS technology raised concerns about the safety and efficacy of these devices, namely, scaffold thrombosis. Intensive research with multimodality imaging in the field is being conducted to have in-depth understanding of the issues, which will facilitate the improvement of implantation techniques and the development of the next-generation BRSs. The current review focuses on the clinical application of the imaging modalities to assess the short- and long-term performance of the Absorb BVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

(Reconstructed from Nakatani et al. [3])

Fig. 3

Reprinted with permission from Sotomi et al. Circulation Research 2017 [9]

Fig. 4

Reprinted with permission from Europa Digital & Publishing [46]

Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Serruys PW, Garcia-Garcia HM, Onuma Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 2012;33:16–25b.

    Article  PubMed  Google Scholar 

  2. Onuma Y, Serruys PW, Muramatsu T, Nakatani S, van Geuns RJ, de Bruyne B, et al. Incidence and imaging outcomes of acute scaffold disruption and late structural discontinuity after implantation of the absorb Everolimus-Eluting fully bioresorbable vascular scaffold: optical coherence tomography assessment in the ABSORB cohort B Trial (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions). JACC Cardiovasc Interv. 2014;7:1400–11.

    Article  PubMed  Google Scholar 

  3. Nakatani S, Ishibashi Y, Sotomi Y, Perkins L, Eggermont J, Grundeken MJ, et al. Bioresorption and vessel wall integration of a fully bioresorbable polymeric everolimus-eluting scaffold: optical coherence tomography, intravascular ultrasound, and histological study in a porcine model with 4-year follow-up. JACC Cardiovasc Interv. 2016;9:838–51.

    Article  PubMed  Google Scholar 

  4. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202.

    Article  PubMed  Google Scholar 

  5. Serruys PW, Chevalier B, Sotomi Y, Cequier A, Carrie D, Piek JJ, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388:2479–91.

    Article  CAS  PubMed  Google Scholar 

  6. Collet C, Asano T, Sotomi Y, Cavalcante R, Miyazaki Y, Zeng Y, et al. Early, late and very late incidence of bioresorbable scaffold thrombosis: a systematic review and meta-analysis of randomized clinical trials and observational studies. Minerva Cardioangiol. 2017;65:32–51.

    PubMed  Google Scholar 

  7. Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Bioresorbable scaffolds versus metallic stents in routine PCI. N Engl J Med. 2017;376:2319–28.

    Article  CAS  PubMed  Google Scholar 

  8. Onuma Y, Sotomi Y, Shiomi H, Ozaki Y, Namiki A, Yasuda S, et al. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EuroIntervention. 2016;12:1090–101.

    Article  PubMed  Google Scholar 

  9. Sotomi Y, Onuma Y, Collet C, Tenekecioglu E, Virmani R, Kleiman NS, et al. Bioresorbable scaffold: the emerging reality and future directions. Circ Res. 2017;120:1341–52.

    Article  CAS  PubMed  Google Scholar 

  10. Nakatani S, Onuma Y, Ishibashi Y, Eggermont J, Zhang YJ, Campos CM, et al. Temporal evolution of strut light intensity after implantation of bioresorbable polymeric intracoronary scaffolds in the ABSORB cohort B trial-an application of a new quantitative method based on optical coherence tomography. Circ J. 2014;78:1873–81.

    Article  PubMed  Google Scholar 

  11. Ishibashi Y, Nakatani S, Sotomi Y, Suwannasom P, Grundeken MJ, Garcia-Garcia HM, et al. Relation between bioresorbable scaffold sizing using QCA-Dmax and clinical outcomes at 1 year in 1,232 patients From 3 study cohorts (ABSORB Cohort B, ABSORB EXTEND, and ABSORB II). JACC Cardiovasc Interv. 2015;8:1715–26.

    Article  PubMed  Google Scholar 

  12. Serruys PW, Ormiston JA, Onuma Y, Regar E, Gonzalo N, Garcia-Garcia HM, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373:897–910.

    Article  CAS  PubMed  Google Scholar 

  13. Serruys PW, Onuma Y, Dudek D, Smits PC, Koolen J, Chevalier B, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol. 2011;58:1578–88.

    Article  CAS  PubMed  Google Scholar 

  14. Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJ, Wykrzykowska JJ, Schultz C, et al. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6:1037–45.

    Article  PubMed  Google Scholar 

  15. Tsuchida K, van der Giessen WJ, Patterson M, Tanimoto S, Garcia-Garcia HM, Regar E, et al. In vivo validation of a novel three-dimensional quantitative coronary angiography system (CardiOp-B): comparison with a conventional two-dimensional system (CAAS II) and with special reference to optical coherence tomography. EuroIntervention. 2007;3:100–8.

    PubMed  Google Scholar 

  16. Sotomi Y, Onuma Y, Suwannasom P, Tateishi H, Tenekecioglu E, Zeng Y, et al. Is quantitative coronary angiography reliable in assessing the lumen gain after treatment with the everolimus-eluting bioresorbable polylactide scaffold? EuroIntervention. 2016;12:e998–1008.

    Article  PubMed  Google Scholar 

  17. Jimenez JM, Davies PF. Hemodynamically driven stent strut design. Ann Biomed Eng. 2009;37:1483–94.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sotomi Y, Onuma Y, Miyazaki Y, et al. Is quantitative coronary angiography reliable in assessing the late lumen loss of the everolimus eluting bioresorbable polylactide scaffold in comparison with the cobalt chromium metallic stent? EuroIntervention. 2017. doi:10.4244/EIJ-D-17-00070.

    Google Scholar 

  19. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS), et al. A report of the American College of Cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2001;37:1478–92.

    Article  CAS  PubMed  Google Scholar 

  20. Mintz GS, Garcia-Garcia HM, Nicholls SJ, Weissman NJ, Bruining N, Crowe T, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention. 2011;6(1123–1130):1129.

    Google Scholar 

  21. Steinvil A, Rogers T, Torguson R, Waksman R. Overview of the 2016 US food and drug administration circulatory system devices advisory panel meeting on the absorb bioresorbable vascular scaffold system. JACC Cardiovasc Interv. 2016;9:1757–64.

    Article  PubMed  Google Scholar 

  22. Sotomi Y, Suwannasom P, Tenekecioglu E, Tateishi H, Abdelghani M, Serruys PW, et al. Differential aspects between cobalt-chromium everolimus drug-eluting stent and Absorb everolimus bioresorbable vascular scaffold: from bench to clinical use. Expert Rev Cardiovasc Ther. 2015;13:1127–45.

    Article  CAS  PubMed  Google Scholar 

  23. Brugaletta S, Gomez-Lara J, Diletti R, Farooq V, van Geuns RJ, de Bruyne B, et al. Comparison of in vivo eccentricity and symmetry indices between metallic stents and bioresorbable vascular scaffolds: insights from the ABSORB and SPIRIT trials. Catheter Cardiovasc Interv. 2012;79:219–28.

    Article  PubMed  Google Scholar 

  24. Suwannasom P, Sotomi Y, Ishibashi Y, Cavalcante R, Albuquerque FN, Macaya C, et al. The impact of post-procedural asymmetry, expansion, and eccentricity of bioresorbable everolimus-eluting scaffold and metallic everolimus-eluting stent on clinical outcomes in the ABSORB II trial. JACC Cardiovasc Interv. 2016;9:1231–42.

    Article  PubMed  Google Scholar 

  25. Gomez-Lara J, Brugaletta S, Diletti R, Gogas BD, Farooq V, Onuma Y, et al. Agreement and reproducibility of gray-scale intravascular ultrasound and optical coherence tomography for the analysis of the bioresorbable vascular scaffold. Catheter Cardiovasc Interv. 2012;79:890–902.

    Article  PubMed  Google Scholar 

  26. Brown AJ, McCormick LM, Hoole SP, West NE. Coregistered intravascular ultrasound and optical coherence tomography imaging during implantation of a bioresorbable vascular scaffold. JACC Cardiovasc Interv. 2013;6:e41–2.

    Article  PubMed  Google Scholar 

  27. Chin CY, Maehara A, Fall K, Mintz GS, Ali ZA. Imaging comparisons of coregistered native and stented coronary segments by high-definition 60-MHz intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Interv. 2016;9:1305–6.

    Article  PubMed  Google Scholar 

  28. Serruys PW, Onuma Y, Garcia-Garcia HM, Muramatsu T, van Geuns RJ, de Bruyne B, et al. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention. 2014;9:1271–84.

    Article  PubMed  Google Scholar 

  29. Brugaletta S, Garcia-Garcia HM, Garg S, Gomez-Lara J, Diletti R, Onuma Y, et al. Temporal changes of coronary artery plaque located behind the struts of the everolimus eluting bioresorbable vascular scaffold. Int J Cardiovasc Imaging. 2011;27:859–66.

    Article  PubMed  Google Scholar 

  30. Campos CM, Ishibashi Y, Eggermont J, Nakatani S, Cho YK, Dijkstra J, et al. Echogenicity as a surrogate for bioresorbable everolimus-eluting scaffold degradation: analysis at 1-, 3-, 6-, 12–18, 24-, 30-, 36- and 42-month follow-up in a porcine model. Int J Cardiovasc Imaging. 2015;31:471–82.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schaar JA, De Korte CL, Mastik F, Strijder C, Pasterkamp G, Boersma E, et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation. 2003;108:2636–41.

    Article  PubMed  Google Scholar 

  32. Schaar JA, Regar E, Mastik F, McFadden EP, Saia F, Disco C, et al. Incidence of high-strain patterns in human coronary arteries: assessment with three-dimensional intravascular palpography and correlation with clinical presentation. Circulation. 2004;109:2716–9.

    Article  PubMed  Google Scholar 

  33. Garcia-Garcia HM, Gonzalo N, Pawar R, Kukreja N, Dudek D, Thuesen L, et al. Assessment of the absorption process following bioabsorbable everolimus-eluting stent implantation: temporal changes in strain values and tissue composition using intravascular ultrasound radiofrequency data analysis. A substudy of the ABSORB clinical trial. EuroIntervention. 2009;4:443–8.

    Article  PubMed  Google Scholar 

  34. Nakatani S, Sotomi Y, Ishibashi Y, Grundeken MJ, Tateishi H, Tenekecioglu E, et al. Comparative analysis method of permanent metallic stents (XIENCE) and bioresorbable poly-l-lactic (PLLA) scaffolds (Absorb) on optical coherence tomography at baseline and follow-up. EuroIntervention. 2016;12:1498–509.

    Article  PubMed  Google Scholar 

  35. Karanasos A, Simsek C, Gnanadesigan M, van Ditzhuijzen NS, Freire R, Dijkstra J, et al. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol. 2014;64:2343–56.

    Article  PubMed  Google Scholar 

  36. van Soest G, Goderie T, Regar E, Koljenovic S, van Leenders GL, Gonzalo N, et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt. 2010;15:011105.

    Article  PubMed  Google Scholar 

  37. Ughi GJ, Adriaenssens T, Sinnaeve P, Desmet W, D’Hooge J. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images. Biomed Opt Express. 2013;4:1014–30.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Methe H, Balcells M, Alegret Mdel C, Santacana M, Molins B, Hamik A, et al. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol Heart Circ Physiol. 2007;292:H2167–75.

    Article  CAS  PubMed  Google Scholar 

  39. Bourantas CV, Papafaklis MI, Kotsia A, Farooq V, Muramatsu T, Gomez-Lara J, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv. 2014;7:315–24.

    Article  PubMed  Google Scholar 

  40. Sotomi Y, Tateishi H, Suwannasom P, Dijkstra J, Eggermont J, Liu S, et al. Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography. Int J Cardiovasc Imaging. 2016;32:871–83.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol. 2012;59:1337–49.

    Article  PubMed  Google Scholar 

  42. Papafaklis MI, Bourantas CV, Farooq V, Diletti R, Muramatsu T, Zhang Y, et al. In vivo assessment of the three-dimensional haemodynamic micro-environment following drug-eluting bioresorbable vascular scaffold implantation in a human coronary artery: fusion of frequency domain optical coherence tomography and angiography. EuroIntervention. 2013;9:890.

    Article  PubMed  Google Scholar 

  43. Mejia J, Ruzzeh B, Mongrain R, Leask R, Bertrand OF. Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments. Biomed Eng Online. 2009;8:8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sotomi Y, Onuma Y, Dijkstra J, Eggermont J, Liu S, Tenekecioglu E, et al. Impact of implantation technique and plaque morphology on strut embedment and scaffold expansion of polylactide bioresorbable scaffold-insights from ABSORB Japan Trial. Circ J. 2016;80:2317–26.

    Article  PubMed  Google Scholar 

  45. Sotomi Y, Onuma Y, Dijkstra J, et al. Fate of post-procedural malapposition of everolimus-eluting polymeric bioresorbable scaffold and everolimus-eluting cobalt chromium metallic stent in human coronary arteries: sequential assessment with optical coherence tomography in ABSORB Japan trial. Eur Heart J Cardiovasc Imaging. 2017. doi:10.1093/ehjci/jew329.

    PubMed  Google Scholar 

  46. Sotomi Y, Suwannasom P, Serruys PW, Onuma Y. Possible mechanical causes of scaffold thrombosis: insights from case reports with intracoronary imaging. EuroIntervention. 2017;12:1747–56.

    Article  PubMed  Google Scholar 

  47. Raber L, Brugaletta S, Yamaji K, O’Sullivan CJ, Otsuki S, Koppara T, et al. Very late scaffold thrombosis: intracoronary imaging and histopathological and spectroscopic findings. J Am Coll Cardiol. 2015;66:1901–14.

    Article  CAS  PubMed  Google Scholar 

  48. Cuculi F, Puricel S, Jamshidi P, Valentin J, Kallinikou Z, Toggweiler S, et al. Optical coherence tomography findings in bioresorbable vascular scaffolds thrombosis. Circ Cardiovasc Interv. 2015;8:e002518.

    CAS  PubMed  Google Scholar 

  49. Otsuka F, Pacheco E, Perkins LE, Lane JP, Wang Q, Kamberi M, et al. Long-term safety of an everolimus-eluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014;7:330–42.

    Article  CAS  PubMed  Google Scholar 

  50. Bourantas CV, Papafaklis MI, Lakkas L, Sakellarios A, Onuma Y, Zhang YJ, et al. Fusion of optical coherence tomographic and angiographic data for more accurate evaluation of the endothelial shear stress patterns and neointimal distribution after bioresorbable scaffold implantation: comparison with intravascular ultrasound-derived reconstructions. Int J Cardiovasc Imaging. 2014;30:485–94.

    Article  PubMed  Google Scholar 

  51. Tenekecioglu E, Poon EK, Collet C, Thondapu V, Torii R, Bourantas CV, et al. The nidus for possible thrombus formation: insight from the microenvironment of bioresorbable vascular scaffold. JACC Cardiovasc Interv. 2016;9:2167–8.

    Article  PubMed  Google Scholar 

  52. Tenekecioglu E, Torii R, Bourantas C, Abdelghani M, Cavalcante R, Sotomi Y, et al. Assessment of the hemodynamic characteristics of absorb BVS in a porcine coronary artery model. Int J Cardiol. 2017;227:467–73.

    Article  PubMed  Google Scholar 

  53. Ueda Y, Matsuo K, Nishimoto Y, Sugihara R, Hirata A, Takeda Y, et al. The importance of intracoronary imaging when we speculate long-term outcome of new intracoronary stents. Angioscopy. 2015;1:17–20.

    Article  Google Scholar 

  54. Spuentrup E, Ruebben A, Mahnken A, Stuber M, Kolker C, Nguyen TH, et al. Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent. Circulation. 2005;111:1019–26.

    Article  PubMed  Google Scholar 

  55. Nieman K, Serruys PW, Onuma Y, van Geuns RJ, Garcia-Garcia HM, de Bruyne B, et al. Multislice computed tomography angiography for noninvasive assessment of the 18-month performance of a novel radiolucent bioresorbable vascular scaffolding device: the ABSORB trial (a clinical evaluation of the bioabsorbable everolimus eluting coronary stent system in the treatment of patients with de novo native coronary artery lesions). J Am Coll Cardiol. 2013;62:1813–4.

    Article  PubMed  Google Scholar 

  56. Collet C, Sotomi Y, Cavalcante R, Asano T, Miyazaki Y, Tenekecioglu E, et al. Accuracy of coronary computed tomography angiography for bioresorbable scaffold luminal investigation: a comparison with optical coherence tomography. Int J Cardiovasc Imaging. 2017;33:431–9.

    Article  PubMed  Google Scholar 

  57. Onuma Y, Collet C, van Geuns RJ, et al. Long-term serial non-invasive multislice computed tomography angiography with functional evaluation after coronary implantation of a bioresorbable everolimus-eluting scaffold: the ABSORB cohort B MSCT substudy. Eur Heart J Cardiovasc Imaging. 2017. doi:10.1093/ehjci/jex022.

    Google Scholar 

  58. Barone-Rochette G, Vautrin E, Rodiere M, Broisat A, Vanzetto G. First magnetic resonance coronary artery imaging of bioresorbable vascular scaffold in-patient. Eur Heart J Cardiovasc Imaging. 2015;16:229.

    Article  PubMed  Google Scholar 

  59. Reiss S, Krafft AJ, Zehender M, et al. Magnetic resonance imaging of bioresorbable vascular scaffolds: potential approach for noninvasive evaluation of coronary patency. Circ Cardiovasc Interv. 2015;8(4). doi:10.1161/CIRCINTERVENTIONS.115.002388.

  60. Abizaid A. Desolve Nx, Cx and amity: unique properties and results from 150 µm to 120 µm. In: Presented at TCT 2016.

  61. Abizaid A. FANTOM II: six-month and nine-month clinical and angiographic results with a radiopaque desaminotyrosine polycarbonate-based sirolimus-eluting bioresorbable vascular scaffold in patients with coronary artery disease. In: Presented at TCT 2016.

  62. Seth A. MeRes100—design specifications and the 6-months MeRes-1 results. In: Presented at TCT 2016.

  63. Colombo A. FORTITUDE: Nine-month clinical, angiographic, and OCT results with an amorphous PLLA-based sirolimus-eluting bioresorbable vascular scaffold in patients with coronary artery disease. In: Presented at TCT 2016.

  64. Xu B. FIRESORB PLLA-based sirolimus-eluting scaffold: 6-month FUTURE-I Results. In: Presented at TCT 2016.

  65. Geuns R-Jv. Highlights (and my interpretations) from: new BRS—FANTOM II, MeRes-1, FORTITUDE and FUTURE-I (6–9 month results). In: Presented at TCT 2016.

  66. Serruys PW, Onuma Y. Dmax for sizing, PSP-1, PSP-2, PSP-3 or OCT guidance: interventionalist’s jargon or indispensable implantation techniques for short- and long-term outcomes of Absorb BRS? EuroIntervention. 2017;12:2047–56.

    Article  PubMed  Google Scholar 

  67. Ortega-Paz L, Capodanno D, Gori T, Nef H, Latib A, Caramanno G, et al. Predilation, sizing and post-dilation scoring in patients undergoing everolimus-eluting bioresorbable scaffold implantation for prediction of cardiac adverse events: development and internal validation of the PSP score. EuroIntervention. 2017;12:2110–7.

    Article  PubMed  Google Scholar 

  68. Puricel S, Cuculi F, Weissner M, Schmermund A, Jamshidi P, Nyffenegger T, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol. 2016;67:921–31.

    Article  PubMed  Google Scholar 

  69. Shimamura K, Guagliumi G. Optical coherence tomography for online guidance of complex coronary interventions. Circ J. 2016;80:2063–72.

    Article  PubMed  Google Scholar 

  70. Alberts B. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. Serruys.

Ethics declarations

Conflict of interest

Y. Sotomi received speaker honoraria from Abbott Vascular Japan and research grants from GOODMAN, Fukuda Memorial Foundation for Medical Research and SUNRISE lab. T. Muramatsu received speaker honoraria from Abbott Vascular Japan. K. Kozuma and K. Tanabe are members of Advisory Board of Abbott Vascular Japan, and receive honorarium for lecture from Abbott Vascular Japan. P. W. Serruys is a member of the Advisory Board for Abbott Vascular. Y. Onuma is a member of the Advisory Board for Abbott Vascular and received speaker honoraria from Terumo. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Funding

No funding for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotomi, Y., Suwannasom, P., Tenekecioglu, E. et al. Imaging assessment of bioresorbable vascular scaffolds. Cardiovasc Interv and Ther 33, 11–22 (2018). https://doi.org/10.1007/s12928-017-0486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-017-0486-5

Keywords

Navigation