Skip to main content
Log in

Differences in nutrient remobilization characteristics and relationship to senescence and grain nutrient content among rice varieties

  • Original Research
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

During leaf senescence, essential nutrients are remobilized to sink tissues such as developing seeds and grains. Nutritional contents in the grains of crop plants may be influenced by the extent of the nutrient remobilization process, which may be influenced by the leaf senescence programming. To test these hypothetical relationships in rice plants, nutrient remobilization characteristics of three macro-elements—nitrogen (N), phosphorus (P), and potassium (K)—were examined among ten rice genetic backgrounds including nine representative Thai rice varieties and one Indian variety. Greenness colorations and the N, P, and K contents of flag leaves of the field-grown rice plants were quantified at 0, 7, 14, 21, and 28 days after flowering. Rice varieties that exhibited a stay-green trait or high nutrient remobilization efficiency were identified. On average, the N, P, and K remobilization efficiencies were 50%, 27%, and 22%, respectively, suggesting a poor remobilization process in rice compared to other crop plants. No significant relationship (P < 0.05) was found between the nutrient remobilization rates or efficiencies and the leaf greenness reduction efficiencies among the rice varieties. Furthermore, no significant relationship (P < 0.05) was found between the N, P, and K contents in mature rice grains and the nutrient remobilization rates and efficiencies, or the initial nutrient content stored in flag leaves. Further studies using a larger number and broader range of rice varieties and examining other characteristics of the leaf senescence and nutrient remobilization processes may be needed to verify this lack of association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811

    Article  PubMed  Google Scholar 

  • Ba Hoang T, Kobata T (2009) Stay-green in rice (Oryza sativa L.) of drought-prone areas in desiccated soils. Plant Prod Sci 12(4):397–408

    Article  Google Scholar 

  • Billard V, Maillard A, Coquet L, Jouenne T, Cruz F, Garcia-Mina JM, Yvin JC, Ourry A, Etienne P (2016) Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus. Plant Physiol Biochem 107:337–343

    Article  CAS  PubMed  Google Scholar 

  • Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK (2017) Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit Rev Food Sci Nutr 57(11):2455–2481

    Article  CAS  PubMed  Google Scholar 

  • Butardo VM Jr, Sreenivasulu N (2016) Tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals. Int Rev Cell Mol Biol 323:31–70

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Xia G, Zhang G (2008) Nutrition accumulation, remobilization, and partitioning in rice on no-tillage soil. J Plant Nutr 31(11):2044–2058

    Article  CAS  Google Scholar 

  • Chen Q, Shinozaki D, Luo J, Pottier M, Havé M et al (2019) Autophagy and nutrients management in plants. Cells 8(11):1426

    Article  CAS  PubMed Central  Google Scholar 

  • Department of Agriculture (2020) Notification of Department of Agriculture https://www.doa.go.th/pvp/wp-content/uploads/2020/06/AnnoDOA_Public221.pdf

  • Distelfeld A, Avni R, Fischer AM (2014) Senescence, nutrient remobilization, and yield in wheat and barley. J Exp Bot 65(14):3783–3798

    Article  PubMed  Google Scholar 

  • Division of Rice Research and Development (2016) Rice Knowledge Bank. http://www.ricethailand.go.th/rkb3/title-index.php-file=content.php&id=76.htm

  • Division of Rice Research and Development (2016) Rice Knowledge Bank. http://www.ricethailand.go.th/rkb3/title-index.php-file=content.php&id=81.htm

  • Division of Rice Research and Development (2016) Rice Knowledge Bank. http://www.ricethailand.go.th/rkb3/title-index.php-file=content.php&id=80.htm

  • Etienne P, Diquelou S, Prudent M, Salon C, Maillard A, Ourry A (2018) Macro and micronutrient storage in plants and their remobilization when facing scarcity: the case of drought. Agriculture 8(1):14

    Article  CAS  Google Scholar 

  • Fu JD, Yan YF, Lee BW (2009) Physiological characteristics of a functional stay-green rice “SNU-SG1” during grain-filling period. J Crop Sci Biotechnol 12(1):47–52

    Article  Google Scholar 

  • Fukagawa NK, Ziska LH (2019) Rice: importance for global nutrition. J Nutr Sci Vitaminol 65(Supplement):S2–S3

    Article  PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    Article  CAS  PubMed  Google Scholar 

  • Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. CR Biol 333(4):382–391

    Article  CAS  Google Scholar 

  • Have M, Marmagne A, Chardon F, Masclaux-Daubresse C (2017) Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. J Exp Bot 68(10):2513–2529

    CAS  PubMed  Google Scholar 

  • Hill J (1980) The remobilization of nutrients from leaves. J Plant Nutr 2(4):407–444

    Article  CAS  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158(10):1317–1323

    Article  CAS  Google Scholar 

  • Jeong K, Julia CC, Waters DL, Pantoja O, Wissuwa M, Heuer S, Liu L, Rose TJ (2017) Remobilisation of phosphorus fractions in rice flag leaves during grain filling: implications for photosynthesis and grain yields. PLoS ONE 12(11):e0187521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis, Bulletin, 766. University of the California Agricultural Experiment Station, Berkeley, pp 26–78

    Google Scholar 

  • Julia C, Wissuwa M, Kretzschmar T, Jeong K, Rose T (2016) Phosphorus uptake, partitioning and redistribution during grain filling in rice. Ann Bot 118(6):1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmann J, Müller B, Hammes UZ (2018) The long and winding road: transport pathways for amino acids in Arabidopsis seeds. Plant Reprod 31(3):253–261

    Article  CAS  PubMed  Google Scholar 

  • Kennedy G, Burlingame B, Nguyen VN (2003) Nutritional contribution of rice and impact of biotechnology and biodiversity in rice-consuming countries. In: Proceedings of the 20th Session of the International Rice Commission, Bangkok, Thailand, FAO, Rome, pp 59–69

  • Lee JS, Sreenivasulu N, Hamilton RS, Kogli A (2019) Brown rice, a diet rich in health promoting properties. J Nutr Sci Vitaminol 65(Supplement):S26–S28

    Article  PubMed  Google Scholar 

  • Liu J, Wu YH, Yang JJ, Liu YD, Shen FF (2008) Protein degradation and nitrogen remobilization during leaf senescence. J Plant Biol 51(1):11–19

    Article  CAS  Google Scholar 

  • Mahender A, Anandan A, Pradhan SK, Pandit E (2016) Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. Springerplus 5(1):1–18

    Article  CAS  Google Scholar 

  • Maillard A, Diquélou S, Billard V, Laîné P, Garnica M, Prudent M, Garcia-Mina JM, Yvin JC, Ourry A (2015) Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Sci 6:317

    Article  PubMed  PubMed Central  Google Scholar 

  • Mae T (2010) Nitrogen utilization, growth and yield in rice plants. In: Ohyama T, Sueyoshi K (eds) Nitrogen assimilation in plants, Research Signpost, Kerala, pp 243–253

    Google Scholar 

  • Mari S, Bailly C, Thomine S (2020) Handing off iron to the next generation: how does it get into seeds and what for? Biochem J 477(1):259–274

    Article  CAS  PubMed  Google Scholar 

  • Martins MTB, de Souza WR, da Cunha BADB, Basso MF, de Oliveira NG et al (2016) Characterization of sugarcane (Saccharum spp.) leaf senescence: implications for biofuel production. Biotechnol Biofuels 9(1):1–17

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Ranjan RK, Anand A, Singh B (2018) Combined deficiency of nitrogen and iron increases senescence induced remobilization of plant immobile iron in wheat. Acta Physiol Plant 40(12):1–12

    Article  CAS  Google Scholar 

  • Pottier M, Dumont J, Masclaux-Daubresse C, Thomine S (2019) Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. J Exp Bot 70(3):859–869

    CAS  PubMed  Google Scholar 

  • Reuscher S, Kolter A, Hoffmann A, Pillen K, Krämer U (2016) Quantitative trait loci and inter-organ partitioning for essential metal and toxic analogue accumulation in barley. PLoS ONE 11(4):e0153392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha S, Roy A (2020) Whole grain rice fortification as a solution to micronutrient deficiency: technologies and need for more viable alternatives. Food Chem 326:127049

    Article  CAS  PubMed  Google Scholar 

  • Saleh AS, Wang P, Wang N, Yang L, Xiao Z (2019) Brown rice versus white rice: nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr Rev Food Sci Food Saf 18(4):1070–1096

    Article  PubMed  Google Scholar 

  • Sathish KP, Sanjeeva RD, Praveen KR, Sekhar MSRSC, Subba R, Krishna S, Sudhakar P, Madhav MS (2020) Agromorphological characters of aromatic rice germplasm. Plant Arch 20:1262–1269

    Google Scholar 

  • Schippers JH, Schmidt R, Wagstaff C, Jing HC (2015) Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol 169(2):914–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shokri S, Siadat SA, Fathi G, Maadi B, Gilani A, Mashhadi AA (2009) Effect of nitrogen rates on dry matter remobilization of three rice cultivars. Int J Agric Res 4(6):213–217

    Article  CAS  Google Scholar 

  • Sinclair TR, de Wit CT (1975) Photosynthate and nitrogen requirements for seed production by various crops. Science 189(4202):565–567

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA (2013) Zn/Fe remobilization from vegetative tissues to rice seeds: should I stay or should I go? Ask Zn/Fe supply! Front Plant Sci 4:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230(5):985–1002

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA, Vasconcelos MW, Grusak MA, Fett JP (2012) Effects of different Fe supplies on mineral partitioning and remobilization during the reproductive development of rice (Oryza sativa L.). Rice 5(1):1–11

    Article  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51(suppl_1):329–337

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang F, Xiao F, Tao Y, Liu Z, Li G, Wang S, Ding Y (2018) Contribution of mineral nutrients from source to sink organs in rice under different nitrogen fertilization. Plant Growth Regul 86(2):159–167

    Article  CAS  Google Scholar 

  • White PJ (2012) Long-distance transport in the xylem and phloem. In: Marshner P (ed) Marschner’s mineral nutrition of higher plants. Academic Press, Cambridge, pp 49–70

    Chapter  Google Scholar 

  • Wu CY, Lu LL, Yang XE, Feng Y, Wei YY, Hao HL, Stoffella PJ, He ZL (2010) Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58(11):6767–6773

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz O, Kazar GA, Cakmak I, Ozturk L (2017) Differences in grain zinc are not correlated with root uptake and grain translocation of zinc in wild emmer and durum wheat genotypes. Plant Soil 411(1–2):69–79

    Article  CAS  Google Scholar 

  • Yoneyama T, Tanno F, Tatsumi J, Mae T (2016) Whole-plant dynamic system of nitrogen use for vegetative growth and grain filling in rice plants (Oryza sativa L.) as revealed through the production of 350 grains from a germinated seed over 150 days: a review and synthesis. Front Plant Sci 7:1151

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng DD, Qin R, Li M, Alamin M, Jin XL, Liu Y, Shi CH (2017) The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Mol Genet Genomics 292(2):385–395

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Lin Y, Chen H (2020) Improving nutritional quality of rice for human health. Theor Appl Genet 133(5):1397–1413

    Article  PubMed  Google Scholar 

  • Zhou B, Serret MD, Pie JB, Shah SS, Li Z (2018) Relative contribution of nitrogen absorption, remobilization, and partitioning to the ear during grain filling in Chinese winter wheat. Front Plant Sci 9:1351

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a public grant (ID 10999) from Mahidol University. We thank the Rice Department of Thailand and the Suphan Buri Rice Research Center for the plant materials and the experimental fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metha Meetam.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khwankaew, J., Bunnag, W., Pichakum, A. et al. Differences in nutrient remobilization characteristics and relationship to senescence and grain nutrient content among rice varieties. J. Crop Sci. Biotechnol. 25, 407–419 (2022). https://doi.org/10.1007/s12892-022-00141-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-022-00141-9

Keywords

Navigation