Skip to main content

Advertisement

Log in

Advances on plant salinity stress responses in the post-genomic era: a review

  • Review Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Plant productivity is significantly affected by several environmental stresses. Excess amount of salt in the soil is one of the environmental stresses that affect plant growth and development adversely. Therefore, one of the significant crucial and challenging researches going on in plant science is to understand the salinity stress responses in plants. Mainly, the molecular and physiological studies promoting us to follow the salinity stress responses in various plants. Recent studies and reports on distinct and novel regulatory mechanisms and pathways involving sRNA molecules, chromosome remodelling and modification in genomic DNA. The studies enabled us to understand that the plant has evolved such a set of complex system mechanisms against severe salinity effects stress. Salt stress level causes a reduction in photosynthesis, and hikes transpiration rate in plants alternatively reduces plant biomass. Here we review our understanding of salinity stress impact on plants and various aspects of response mechanisms, metabolisms and strategies in plants. This review also highlights several response mechanisms in plants that continually takes place to withstand stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abid MA, Liang C, Malik W, Meng Z, Tao Z, Meng Z, Ashraf J, Guo S, Zhang R (2018) Cascades of ionic and molecular networks involved in expression of genes underpin salinity tolerance in cotton. J Plant Growth Regul 37(2):668–679

    CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94

    CAS  PubMed  Google Scholar 

  • Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56(3):231–249

    CAS  PubMed  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy M, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25(12):1263–1274

    CAS  PubMed  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54(1):102–123

    CAS  PubMed  Google Scholar 

  • Al-Harrasi I, Al-Yahyai R, Yaish MW (2018) Differential DNA methylation and transcription profiles in date palm roots exposed to salinity. PLoS ONE 13(1):e0191492

    PubMed  PubMed Central  Google Scholar 

  • Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19(7):1283–1295

    CAS  PubMed  Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70(4):385–401

    CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:1–17

    Google Scholar 

  • Barciszewski J, Siboska G, Rattan SI, Clark BF (2000) Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine). Plant Growth Regul 32(2–3):257–265

    CAS  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485

    CAS  PubMed  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T (2010) WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1. Plant J 63(2):229–240

    CAS  PubMed  Google Scholar 

  • Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T, Weber M (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42(12):1093

    CAS  PubMed  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu J-K (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49(1):61–72

    CAS  PubMed  Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2009) Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28(2):187–192

    CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ci D, Song Y, Tian M, Zhang D (2015) Methylation of miRNA genes in the response to temperature stress in Populus simonii. Front Plant Sci 6:921

    PubMed  PubMed Central  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolaï M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8(9):864–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 10(10):659–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103(1):29–38

    CAS  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51(1):21–37

    CAS  PubMed  Google Scholar 

  • Du C, Zhao P, Zhang H, Li N, Zheng L, Wang Y (2017) The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. J Plant Physiol 215:48–58

    CAS  PubMed  Google Scholar 

  • Echevarría-Zomeño S, Yángüez E, Fernández-Bautista N, Castro-Sanz AB, Ferrando A, Castellano M (2013) Regulation of translation initiation under biotic and abiotic stresses. Int J Mol Sci 14(3):4670–4683

    PubMed  PubMed Central  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132(1):9–14

    CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C (2015a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921

    Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N (2015b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75(2):391–404

    CAS  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci 107(19):8689–8694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friso G, van Wijk KJ (2015) Posttranslational protein modifications in plant metabolism. Plant Physiol 169(3):1469–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    CAS  PubMed  Google Scholar 

  • Grant MR, Jones JD (2009) Hormone (dis) harmony moulds plant health and disease. Science 324(5928):750–752

    CAS  PubMed  Google Scholar 

  • Guo H, Wang Y, Wang L, Hu P, Wang Y, Jia Y, Zhang C, Zhang Y, Zhang Y, Wang C (2017a) Expression of the MYB transcription factor gene Bpl MYB 46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnol J 15(1):107–121

    CAS  PubMed  Google Scholar 

  • Guo R, Shi L, Yan C, Zhong X, Gu F, Liu Q, Xia X, Li H (2017b) Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol 17(1):41

    PubMed  PubMed Central  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952

    CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21(6):535–553

    CAS  Google Scholar 

  • Hay RT (2005) SUMO: a history of modification. Mol Cell 18(1):1–12

    CAS  PubMed  Google Scholar 

  • He Y, Ecker JR (2015) Non-CG methylation in the human genome. Annu Rev Genom Hum Genet 16:55–77

    CAS  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6(4):318–327

    CAS  PubMed  Google Scholar 

  • Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz K-J (2017) Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot 68(21–22):5961–5976

    PubMed  PubMed Central  Google Scholar 

  • Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136(4):763–776

    CAS  PubMed  Google Scholar 

  • Hua XJ, Van De Cotte B, Van Montagu M, Verbruggen N (2001) The 5′ untranslated region of the At-P5R gene is involved in both transcriptional and post-transcriptional regulation. Plant J 26(2):157–169

    CAS  PubMed  Google Scholar 

  • Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    PubMed  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47(1):141–153

    CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111

    CAS  PubMed  Google Scholar 

  • Jiang X, Chen ZJ (2012) The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12(1):35–48

    CAS  Google Scholar 

  • Jung CG, Lim SD, Hwang S-G, Jang CS (2012) Molecular characterization and concerted evolution of two genes encoding RING-C2 type proteins in rice. Gene 505(1):9–18

    CAS  PubMed  Google Scholar 

  • Kaashyap M, Ford R, Bohra A, Kuvalekar A, Mantri N (2017) Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Curr Genom 18(6):557–567

    CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta BBA Gene Regul Mech 1819(2):137–148

    CAS  Google Scholar 

  • Kim T-W, Wang Z-Y (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    CAS  PubMed  Google Scholar 

  • Kumar K, Srivastava V, Purayannur S, Kaladhar VC, Cheruvu PJ, Verma PK (2016) WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene (s). DNA Res 23(3):225–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Singh S, Singh M, Srivastava PK, Mishra RK, Singh VP, Prasad SM (2017) Transcriptional regulation of salinity stress in plants: a short review. Plant Gene 11:160–169

    CAS  Google Scholar 

  • Kumar V, Khare T, Shriram V, Wani SH (2018) Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Rep 37(1):61–75

    CAS  PubMed  Google Scholar 

  • Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537

    PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14(1):105

    PubMed  PubMed Central  Google Scholar 

  • Li X, Gao S, Tang Y, Li L, Zhang F, Feng B, Fang Z, Ma L, Zhao C (2015) Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genom 16(1):976

    Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292(5524):2077–2080

    CAS  PubMed  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    CAS  PubMed  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CW, Hsu YK, Cheng YH, Yen HC, Wu YP, Wang CS, Lai CC (2012) Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun Mass Spectrom 26(15):1649–1660

    CAS  PubMed  Google Scholar 

  • Ma C, Burd S, Lers A (2015) mi R 408 is involved in abiotic stress responses in Arabidopsis. Plant J 84(1):169–187

    CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ (2007) Targets of RNA-directed DNA methylation. Curr Opin Plant Biol 10(5):512–519

    CAS  PubMed  Google Scholar 

  • Mette M, Aufsatz W, Van der Winden J, Matzke M, Matzke A (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19(19):5194–5201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    CAS  PubMed  Google Scholar 

  • Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM (2011) SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol 155(2):1000–1012

    CAS  PubMed  Google Scholar 

  • Mlynárová L, Nap JP, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51(5):874–885

    PubMed  Google Scholar 

  • Mundade R, Ozer HG, Wei H, Prabhu L, Lu T (2014) Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle 13(18):2847–2852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Munoz A, Castellano M (2012) Regulation of translation initiation under abiotic stress conditions in plants: is it a conserved or not so conserved process among eukaryotes? Comp Funct Genom 2012:406357

    Google Scholar 

  • Pardo JM (2010) Biotechnology of water and salinity stress tolerance. Curr Opin Biotechnol 21(2):185–196

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    CAS  PubMed  Google Scholar 

  • Park G-G, Park J-J, Yoon J, Yu S-N, An G (2010) A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74(4–5):467–478

    CAS  PubMed  Google Scholar 

  • Park J, Kim Y-S, Kim S-G, Jung J-H, Woo J-C, Park C-M (2011) Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol 156(2):537–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    CAS  PubMed  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447(7143):425–432

    CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    CAS  PubMed  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322(5907):1478–1480

    CAS  PubMed  Google Scholar 

  • Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ (2012) WRKY transcription factors: key components in abscisic acid signaling. Plant Biotechnol J 10(1):2–11

    CAS  PubMed  Google Scholar 

  • Ryu H, Cho Y-G (2015) Plant hormones in salt stress tolerance. J Plant Biol 58(3):147–155

    CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32(8):1151–1159

    CAS  PubMed  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    CAS  PubMed  Google Scholar 

  • Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY (2009) Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol 50(1):37–47

    CAS  PubMed  Google Scholar 

  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi I-R, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52(2):344–360

    CAS  PubMed  Google Scholar 

  • Singh M, Singh A, Prasad SM, Singh RK (2017) Regulation of plants metabolism in response to salt stress: an omics approach. Acta Physiol Plant 39(2):48

    Google Scholar 

  • Song A, Li P, Jiang J, Chen S, Li H, Zeng J, Shao Y, Zhu L, Zhang Z, Chen F (2014) Phylogenetic and transcription analysis of chrysanthemum WRKY transcription factors. Int J Mol Sci 15(8):14442–14455

    PubMed  PubMed Central  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21(1):64

    CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47(7):995–1003

    CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62(1):1–9

    CAS  Google Scholar 

  • Vaucheret H (2008) Plant argonautes. Trends Plant Sci 13(7):350–358

    CAS  PubMed  Google Scholar 

  • Vélez-Bermúdez I-C, Salazar-Henao JE, Fornalé S, López-Vidriero I, Franco-Zorrilla J-M, Grotewold E, Gray J, Solano R, Schmidt W, Pagés M (2015) A MYB/ZML complex regulates wound-induced lignin genes in maize. Plant Cell 27(11):3245–3259

    PubMed  PubMed Central  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):86

    PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    CAS  PubMed  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016a) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Xin H, Wang M, Ma Q, Wang L, Kaleri NA, Wang Y, Li X (2016b) Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci 7:385

    PubMed  PubMed Central  Google Scholar 

  • Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19(6):463–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33(4):510–525

    CAS  PubMed  Google Scholar 

  • Yan H, Hong L, Zhou Y, Jiang H, Zhu S, Fan J, Cheng B (2013) A genome-wide analysis of the ERF gene family in sorghum. Genet Mol Res 12(2):2038–2055

    CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60(9):796–804

    CAS  PubMed  Google Scholar 

  • Yang C-W, Xu H-H, Wang L-L, Liu J, Shi D-C, Wang D-L (2009) Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica 47(1):79–86

    CAS  Google Scholar 

  • Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol 12(1):144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161(3):1375–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18(1):83

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge PG Department of Botany, Berhampur University for providing all necessities for smooth conduction of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmalochan Hembram.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, L.M., Hembram, P. Advances on plant salinity stress responses in the post-genomic era: a review. J. Crop Sci. Biotechnol. 24, 117–126 (2021). https://doi.org/10.1007/s12892-020-00072-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-020-00072-3

Keywords

Navigation