Skip to main content
Log in

Genotype by environment interactions (GEIs) for barley grain yield under salt stress condition

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Changes in the relative genetic performance of genotypes across environments are referred to as genotype × environment interactions (GEIs). GEIs can affect barley breeding improvement for salt tolerance because it often complicates the evaluation and selection of superior genotypes. The present study evaluated the GEIs over 60 barley genotypes for yield components and grain yield in six salinity environments in North Delta, Egypt. Data were analyzed using the additive main effects and multiplicative interaction (AMMI) and Tai’s stability parameters. GEIs effects on yield explained 20.3, 20.1, 14.6, and 33.0% of the total variation besides, the first two principal components account for 67.3, 56.3, 64.3, and 83.7% of the explained variance in the four sets, respectively. Six genotypes namely G-4, G-7, G-20, G-34, G-36, and G-39 were found to be most stable and high yielding across environments (GY >2.00 t ha-1), and located close to zero projection onto the AEC ordinate. Tai’s stability parameters demonstrated that these genotypes were more responsive to the environmental changes. The genotypes G-50 and G-53 showed perfect/static stability (α = -0.95, -0.91, respectively). In contrast, the genotype; G-36 had α = 0 and λ = 1.10, indicating parallel with the environmental effects followed by G-44. Overall, we found that GEIs for grain yield are highly significant in all sets, suggesting that responded differently across environments. This interaction may be a result of changes in genotypes’ relative performance across environments, due to their differential responses to various abiotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balestre M, Von Pinho RG, Souza JC, Oliveira RL. 2009. Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genet. Mol. Res. 8: 1311–1322

    Article  CAS  Google Scholar 

  • Ceccarelli S. 1996. Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. In M Cooper, GL Hammer, Eds., Plant adaptation and crop improvement. CABI, pp 467–486. Wallingford, UK

    Google Scholar 

  • Cooper M, Byth DE. 1996. Understanding plant adaptation to achieve systematic applied crop improvement - A fundamental challenge. In M Cooper, GL Hammer, Eds., Plant adaptation and crop improvem ent. Published by CABI Wallingford, UK, 5–23

    Google Scholar 

  • Dehghani H, Ebadi A, Yousefi A. 2006. Biplot analysis of genotype by environment interaction for barley yield in Iran. Agron. J. 98: 388–393

    Article  Google Scholar 

  • Demissew A, Hussein S, Derera J. 2016. Genotype-by-environment interaction and yield stability of quality protein maize hybrids developed from tropicalhighland adapted inbred lines. Euphytica 209: 757–769

    Article  Google Scholar 

  • Elakhdar A, Abd El-Sattar M, Amer K, Kumamaru T. 2016a. Genetic diversity and association analysis among Egyptian barley (Hordeum vulgare L.) genotypes with different adaptations to saline conditions analyzed by SSR markers. AJCS 10: 637–645

    Google Scholar 

  • Elakhdar A, Abdelsattar M, Amer K, Assma R, Kumamaru T. 2016b. Population structure and marker-trait association of salt tolerance in barley (Hordeum vulgare L.). C. R. Biologies 339: 454–461

    Article  PubMed  Google Scholar 

  • FAO. 2015. Land and plant nutrition management service. Available at http://www.fao.org/.

    Google Scholar 

  • Finlay K, Wilkinson G. 1963. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 14: 742–754

    Article  Google Scholar 

  • Garcia del Moral L, Miralles DJ Slafer GA. 2002. Barley Physiology: Phasic and foliar development In GA Slafer, JL Molina-Cano, R Savin, JL Araus, I Romagosa, Eds., Barley Science: recent advances from molecular biology to agronomy of yield and quality. Food Product Press (New York, USA), an imprint of The Haworth Press, Inc., New York, 21 capítulos, c. 664 pp. ISBN 1-56022-909-8, pp 243-268

    Google Scholar 

  • Gauch HGJr, Piepho HP, Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866–889

    Article  Google Scholar 

  • Gauch HGJr. 2006 Statistical analysis of yield trials by AMMI and GGE. Crop Sci 46: 1488–1500

    Article  Google Scholar 

  • Gauch HG, Zobel RW. 1997. Identifying mega-environmentsand targeting genotypes. Crop Sci. 37: 311

    Article  Google Scholar 

  • Gauch HG. 1992 Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam

    Google Scholar 

  • GenStat. 2011. GenStat for Windows 14th Edition. VSN International, Hemel Hempstead, UK, Web page: GenStat.co.uk.

    Google Scholar 

  • Haussmann, BI, Parzies HK, Presterl T, Suši Z, Miedaner T. 2004. Plant genetic resources in crop improvement. Plant Genet. Resour. 2: 3–21

    Article  Google Scholar 

  • Hongyu K, García-Peña M, De Araújo LB, Dos Santos Dias CT. 2014. Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Lett. 51: 89–102

    Article  Google Scholar 

  • Kang MS, Gauch HG. 1996. Genotype-by-Environment Interaction. CRC Press, Boca Raton, Florida. Kang

    Google Scholar 

  • Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R. 2015. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front. Plant Sci. 6: 563

    Google Scholar 

  • Laemmli, UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  CAS  PubMed  Google Scholar 

  • Liu WJ, Li HJ, Wang XD, Zhou KD. 2002. Stability analysis for elementary characters of hybrid rice by AMMI model. Acta Agron. Sin. 28: 569–573

    Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since dy1980. Science 333: 616–20

    Article  CAS  PubMed  Google Scholar 

  • Malosetti M, Ribaut JM, van Eeuwijk FA. 2013. The statistical analysis of multi-environment data: Modeling genotype-byenvironment interaction and its genetic basis. Front. Physiol. 4: 44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ. 16: 15–24

    Article  CAS  Google Scholar 

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nurminiemi M, Madsen S, Rognli OA, Bjørnstad Ã, Ortiz R. 2002. Analysis of the genotype-by-environment interaction of spring barley tested in the Nordic Region of Europe: Relationships among stability statistics for grain yield. Euphytica 127: 123–132

    Article  CAS  Google Scholar 

  • Reza M, Ezatollah F, A Ahmed. 2015. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran. Crop J. 3: 526–535

    Article  Google Scholar 

  • Rharrabti Y, García Del Moral LF, Villegas D, Royo C. 2003. Durum wheat quality in Mediterranean environments III. Stability and comparative methods in analysing G Â E interaction. F. Crop. Res. 80: 141–146

    Article  Google Scholar 

  • Rodriguez M, Rau D, Papa R, Attene G. 2008. Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163: 231- 247

    Article  CAS  Google Scholar 

  • Sayar R, Bchini H, Mosbahi, Khemira H. 2010. Response of durum wheat (Triticum durum Desf.) growth to salt and drought stresses. Czech J. Genet. Plant Breed. - UZEI (Czech Republic).

    Google Scholar 

  • Shafii B, Price WJ. 1998. Analysis of genotype-by-environment interaction using the additive main effects and multiplicative interaction model and stability estimates. J. Agric. Biol. Environ. Stat. 3: 335

    Article  Google Scholar 

  • Smith JB, Tirpak, DA, eds. 1989. The Potential Effects of Global Climate Change on the United States. Report to Congress. EPA-230-05-89-050. Washington, DC: US Environmental Protection Agency

    Google Scholar 

  • Tai G. 1971. Genotypic stability analysis and its application to potato regional trials. Crop Sci. 11: 184

    Article  Google Scholar 

  • Temesgen T, Keneni G, Sefera T, Jarso M. 2015. Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop J. 3: 258–268

    Article  Google Scholar 

  • Thillainathan M, Fernandez GC. 2001. SAS applications for Tai’s stability analysis and AMMI model in genotype x environmental interaction (GEI) effects. J. Hered. 92: 367–71

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui S, Cuesta-Marcos A, Gracia MP, Medina B, Lasa JM, Casas AM, Ciudad FJ, Montoya JL, Moralejo M, Molina-Cano JL, Igartua E. 2014. Spanish barley landraces outperform modern cultivars at low-productivity sites. Plant Breed. 133: 218–226

    Article  Google Scholar 

  • Yan W, Kang MS, Ma B, Woods S, Cornelius PL. 2007. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 47: 643–653

    Article  Google Scholar 

  • Yan W, Kang MS. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press

    Google Scholar 

  • Yang RC, Crossa J, Cornelius PL, J Burgueño. 2009. Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Sci. 49: 1564–1576

    Article  Google Scholar 

  • Žilic S, Barac M, Pešic M, Dodig D, Ignjatovic-Micic D. 2011. Characterization of Proteins fromGrain of Different Bread and Durum Wheat Genotypes. International Journal of Molecular Sciences. (9): 5878–5894.

    Google Scholar 

  • Zobel RW, Wright MJ, Gauch HG. 1988. Statistical analysis of a yield trial. Agron. J. 80: 388–393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Elakhdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elakhdar, A., Kumamaru, T., Smith, K.P. et al. Genotype by environment interactions (GEIs) for barley grain yield under salt stress condition. J. Crop Sci. Biotechnol. 20, 193–204 (2017). https://doi.org/10.1007/s12892-017-0016-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-017-0016-0

Keywords

Navigation