Skip to main content

Advertisement

Log in

Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.)

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

In order to assess efficiency of drought tolerance indices, 50 bread wheat genotypes were evaluated under three environments: normal (clay fertile soil, E1), 100% (E2), and 50% (E3) field water capacity in sandy calcareous soil. A total of 14 drought tolerance indices including grain yield/plant, grain yield/spike, 1000-kernel weight, spike length, no. of tillers, plant height, flowering time, stomata frequency, stomata width, stomata length, drought susceptibility index (DSI), stress tolerance index (STI), yield stability index (YSI), and harmonic mean (HM) were estimated. A moderate to high broad-sense heritability was obtained for 1000-kernel weight (0.47), spike length (0.38), plant height (0.54), flowering time (0.73), stomata frequency (0.59), and stomata length (0.54). Grain yield/plant was strongly positively correlated with grain yield/spike, no. of tillers, plant height, flowering time, stomata length, STI, YSI, and HM, while negatively correlated with stomata frequency and DSI in E2 and E3, respectively. Thus, highly heritable traits strongly correlated with grain yield under stress conditions especially stomata frequency and length could be used as reliable indices for selecting high-yielding genotypes tolerant to drought stress. Cluster analysis based on morpho-physiological traits suggested the group 3 genotypes in E2 as the most tolerant genotypes to be used for developing improved varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahsan M, Hader MZ, Saleem M, Aslam M. 2008. Contribution of various leaf morpho-physiological parameterstowards grain yield in maize. Int. J. Agr. Biol. 10: 546–550

    Google Scholar 

  • Akçura M, Partigoç F, Kaya Y. 2011. Evaluating of drought stress tolerance based on selection indices in Turkish bread wheat landraces. J. Anim. Plant Sci. 21: 700–709

    Google Scholar 

  • Badieh MMS, Farshadfar E, Haghparast R, Rajabi R, Zarei L. 2012. Evaluation of gene actions of some traits contributing in drought tolerance in bread wheat utilizing diallel analysis. Ann. Biol. Res. 3: 3591–3596

    Google Scholar 

  • Barker TC, Campos H, Cooper M, Dolan D, Edmeades GO, Habben J, Schussler J, Wright D, Zinselmeier C. 2005. Improving drought tolerance in maize. Plant Breed. Rev. 25: 173–253

    CAS  Google Scholar 

  • Bhargava S, Sawant K. 2013. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 132: 21–32

    Article  CAS  Google Scholar 

  • Bkagwat SG, Bhatia CR. 1993. Selection for flag leaf stomata frequency in bread wheat. Plant Breed. 110: 129–136

    Article  Google Scholar 

  • Blake NK, Lanning SP, Martin JM, Sherman JD, Talbert LE. 2007. Relationship of flag leaf characteristics to economically important traits in two spring wheat crosses. Crop Sci. 47: 491–494

    Article  Google Scholar 

  • Bouslama M, Schapaugh WT. 1984. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 24: 933–937

    Article  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR. 2004. Improving drought tolerance in maize: a view from industry. Field Crops Res. 90: 19–34

    Article  Google Scholar 

  • Clarke JM, DePauw RM, Townley-Smith TF. 1992. Evaluation of methods for quantification of drought tolerance in wheat. Crop Sci. 32: 728–732

    Article  Google Scholar 

  • Cooper M, van Eeuwijk F, Chapman SC, Podlich DW, Loeffler C. 2006. Genotype-by-environment interactions under water-limited conditions. In JM Ribaut, ed, Drought Adaptation in Cereals, Haworth NY, pp 51–96

  • Dencic S, Kastori R, Kobiljski B, Duggan B. 2000. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113: 43–52

    Article  Google Scholar 

  • Drikvand R, Doosty B, Hosseinpour T. 2012. Response of rainfed wheat genotypes to drought stress using drought tolerance indices. J. Agric. Sci. 4: 126–131

    Google Scholar 

  • Edmeades GO. 2013. Progress in achieving and delivering drought tolerance in maize- an update, ISAAA, Ithaca, NY

    Google Scholar 

  • Ehdaie B, Shakiba MR. 1996. Relationship of internode-specific weight and water-soluble carbohydrates in wheat. Cereal Res. Commun. 24: 61–67

    Google Scholar 

  • Farshadfar E, Ghannadha M, Zahravi M, Sutka J. 2001. Genetic analysis of drought tolerance in wheat. Plant Breed. 114: 542–544

    Article  Google Scholar 

  • Farshadfar E, Moradi Z, Elyasi P, Jamshidi B, Chaghakabodi R. 2012. Effective selection criteria for screening drought tolerant landraces of bread wheat (Triticum aestivum L.). Ann. Biol. Res. 3: 2507–2516

    Google Scholar 

  • Fernandez GCJ. 1992. Effective selection criteria for assessing plant stress tolerance. In CG Kuo, ed, Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress, Publication, Tainan, Taiwan

    Google Scholar 

  • Fischer RA, Maurer R. 1978. Drought resistance in spring wheat cultivar I: Grain yield responses. Aust. J. Agric. Res. 29: 897–912

    Article  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P. 2010. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 61: 3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Gaskell ML, Pearce RB. 1983. Stomata frequency and stomata resistance of maize hybrids differing in photosynthetic capability. Crop Sci. 23: 176–177

    Article  Google Scholar 

  • Golabadi M, Arzani A, Maibody SAM. 2006. Assessment of drought tolerance in segregating populations in durum wheat. Afr. J. Agric. Res. 5: 162–171

    Google Scholar 

  • Golestani M, Pakniat H. 2007. Evaluation of drought tolerance indices in sesame lines. J. Sci, technol. Agric. Nat. Resour. 41: 141–149

    Google Scholar 

  • Guttieri MJ, Stark JC, Brien K, Souza E. 2001. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci. 41: 327–335

    Article  Google Scholar 

  • Iftikhar R, Khaliq I, Kashif M, Ahmad MA, Smiullah. 2012. Study of morphological traits affecting grain yield in wheat (Triticum aestivum L.) under field stress condition. Middle East J. Sci. Res. 11: 19–23

    Google Scholar 

  • Jatoi WA, Baloch MJ, Kumbhar MB, khan NU, Kerio MI. 2011. Effect of water stress on physiological and yield parameters at anthesis stage in elite spring wheat cultivars. Sarhad J. Agric. 27: 332–339

    Google Scholar 

  • Khan AS, Ul Allah S, Sadique S. 2010. Genetic variability and correlation among seedling traits of wheat (Triticum aestivum) under water stress. Int. J. Agric. Biol. 12: 247–250

    Google Scholar 

  • Kristin AS, Senra RR, Perez FI, Enriquez BC, Gallegos JA, Vallego PR, Wassimi N, Kelley JD. 1997. Improving common bean performance under drought stress. Crop Sci. 37: 43–50

    Article  Google Scholar 

  • Lonbani M, Arzani A. 2011. Morpho-physiological traits associated with terminal drought stress tolerance in triticale and wheat. Agron. Res. 9: 315–329

    Google Scholar 

  • Mitra J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Curr. Sci. 80: 58–762

    Google Scholar 

  • Mohammadi M, Karimizadeh R, Abdipour M. 2011. Evaluation of drought tolerance in bread wheat genotypes under dryland and supplemental irrigation conditions. Aust. J. Crop Sci. 5: 487–493

    Google Scholar 

  • Mohammadi R, Farshadfar E, Aghaee M, Shutka J. 2003. Locating QTLs controlling drought tolerance criteria in rye using disomic addition lines. Cereal Res. Commun. 31: 257–263

    Google Scholar 

  • Muhe K. 2011. Selection index in durum wheat (Triticum turgidum var. durum) variety development. Acad. J. Plant Sci. 4: 77–83

    Google Scholar 

  • Nyquist WE. 1991. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 10: 235–322

    Article  Google Scholar 

  • Omara MK. 1994. Collection, maintenance and gene banking of germplasm of wheat, barley, berseem clover, maize and sorghum from moisture deficient areas in Upper Egypt. Final Report of project No. A-5-4 NARP, Egypt

    Google Scholar 

  • Quarrie SA, Jones HG. 1977. Effects of abscistic acid and water stress on development and morphology of wheat. J. Exp. Bot. 28: 192–203

    Article  CAS  Google Scholar 

  • Rohlf FJ. 1998. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.02. Exeter Software, Setauket, New York

    Google Scholar 

  • Rosielle AA, Hamblin J. 1981. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 21: 943–946

    Article  Google Scholar 

  • Saba J, Moghaddam M, Ghassemi K, Nishabouri MR. 2001. Genetic properties of drought resistance indices. J. Agric. Sci. Technol. 3: 43–49

    Google Scholar 

  • Saint Pierre CS, Crossa JL, Bonnett D, Yamaguchi-Shinozaki K, Reynolds MP. 2012. Phenotyping transgenic wheat for drought resistance. J. Exp. Bot. 63: 1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sethi GS. 1995. Stomata size, frequency and distribution in Triticum aestivum, Secale cereale and their amphiploids. Cereal Res. Commun. 23: 103–108

    CAS  Google Scholar 

  • Sio-Se Mardeh A, Ahmadi A, Poustini K, Mohammadi V. 2006. Evaluation of drought resistance indices under various environmental conditions. Field Crop Res. 98: 222–229

    Article  Google Scholar 

  • Tabatabaei SA. 2013. Study relationship of drought tolerance indices in wheat (Triticum aestivum) genotypes. Int. J. Biosci. 3: 15–22

    Google Scholar 

  • Talebi R. 2011. Evaluation of chlorophyll content and canopy temperature as indicators for drought tolerance in durum wheat (Triticum durum Desf.). Aust. J. Basic Appl. Sci. 5: 1457–1462

    Google Scholar 

  • Venora G, Calcagno F. 1991. Study of stomata parameters for selection of drought resistant varieties in Triticum Durum Desf. Euphytica 57: 275–283

    Article  Google Scholar 

  • Wang H, Clarke JM. 1993a. Genotypic, intra plant and environmental variating in stomata frequency and size in wheat. Can. J. Plant Sci. 73: 671–678

    Article  Google Scholar 

  • Wang H, Clarke JM. 1993b. Relationship of excised-leaf water-loss and stomata frequency in wheat. Can. J. Plant Sci. 73: 93–99

    Article  Google Scholar 

  • Xu Z, Zhou G. 2008. Responses of leaf stomata density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59: 3317–3325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang HM, Wang GX. 2001. Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment. Chin J. Plant Ecol. 25: 312–316

    Google Scholar 

  • Zhang YP, Wang ZM, Wu YC, Zhang X. 2006. Stomata characteristics of different green organs in wheat under different irrigation regimes. Acta Agron. Sin. 32: 70–75

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Rawy, M.A., Hassan, M.I. Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.). J. Crop Sci. Biotechnol. 17, 255–266 (2014). https://doi.org/10.1007/s12892-014-0080-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0080-7

Key words

Navigation