Skip to main content
Log in

Regeneration in sugarcane via somatic embryogenesis and genomic instability in regenerated plants

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, embryogenic calli of sugarcane variety BL4 were induced using 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin in different concentrations and combinations. In contrast to earlier studies, embryogenic callus sectors were identified and isolated microscopically within 1–2 weeks. Subsequently, 51 media formulations were used for regeneration of proliferated embryogenic callus, using MS medium supplemented with three different cytokinins [kinetin, 6-Benzylamino purine (BAP), and thidiazuron (TDZ)] and auxins (IAA/NAA and IBA) in different combination and concentrations. After acclimatization, the genomic DNA of regenerated plants was studied to explore the insertion polymorphism of transposable elements in order to ascertain the variation among somaclones. Though low concentration of kinetin with 2,4-D was found supportive to embryogenic callus development, the highest number of regenerated plantlets was observed using BAP (1 μM), however the plantlets had very low fresh weight (2.2 g). Conversely, TDZ alone supported a significant increase in the number of plantlets regenerated (38–40) with higher fresh weight. The somaclones generated during this study showed considerable positional polymorphism of activator-like transposable elements possibly due to the stress associated with in vitro culture. This study provides a procedure to produce regenerated sugarcane plants from embryogenic callus in a relatively short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahloowalia BS, Maretzki A. 1983. Plant regeneration via somatic embryogenesis in sugarcane. Plant Cell Rep. 2: 21–25

    Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T et al. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14: 1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Chengalrayan K, Gallo-Meagher M. 2001. Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell. Dev.-Plant 37: 434–439

    Article  CAS  Google Scholar 

  • Cunff LL, Garsmeur O, Raboin LM, Pauquet J, Telismart H et al. 2008. Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resist ance gene (Bru1) in highly polyploid sugarcane (2n∼12x∼115). Genetics 180: 649–660

    Article  PubMed  Google Scholar 

  • Desai NS, Suprasanna P, Bapat VA. 2004. Simple and reproducible protocol for direct somatic embryogenesis from cultured immature inflorescence segments of sugarcane (Saccharum spp.). Curr. Sci. 87: 764–768

    Google Scholar 

  • Grandbastien MA. 1998. Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3: 181–187

    Article  Google Scholar 

  • Harada JJ. 2001. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J. Plant Physiol. 158: 405–409

    Article  CAS  Google Scholar 

  • Hecht V, Vielle-Calzada J, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC. 2001. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127: 803–816

    Article  PubMed  CAS  Google Scholar 

  • Ho WJ, Vasil IK. 1983. Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and ontogeny of somatic embryos. Protoplasma 118: 169–180

    Article  Google Scholar 

  • Hotta CT, Lembke CG, Domingues DS, Ochoa EA, Cruz GMQ et al. 2010. The biotechnology roadmap for sugarcane omprovement. Trop. Plant Biol. 3: 75–87

    Article  CAS  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM. 2009. Molecular aspects of somatic-to-embryogenic transition in plants. J. Chem. Biol. 2: 177–190

    Article  Google Scholar 

  • Khan IA, Khatri A. 2006. Plant regeneration via organogenesis or somatic embryogenesis in sugarcane; histological studies. Pak. J. Bot. 38: 631–636

    Google Scholar 

  • Lakshmanan P. 2006. Invited review addendum: Somatic embryogenesis in sugarcane- an addendum to the invited review ′In Vitro Cell. Dev. Biol. Plant 41: 345–363; 2005. In Vitro Cell. Dev.-Plant 42: 201–205

    Article  Google Scholar 

  • Lippman Z, Gendrel A, Black M, Vaughn MW, Dedhia N. 2004. Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476

    Article  PubMed  CAS  Google Scholar 

  • Makara AM, Rubaihayo PR, Magambo MJS. 2010. Carry-over effect of Thidiazuron on banana in vitro proliferation at different culture cycles and light incubation conditions. Afr. J. Biotechnol. 9: 3079–3085

    CAS  Google Scholar 

  • Momose M, Abe Y, Ozeki Y. 2010. Miniature inverted-repeat transposable elements of stowaway are active in potato. Genetics 186: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK. 2001. Molecular fate of thidiazuron and its effect on auxin transport in hypocotyls tissues of Pelargonium x hortorum Bailey. Plant Growth Regul. 35: 269–275

    Article  CAS  Google Scholar 

  • Namasivayam P. 2007. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell. Tiss. Org. Cult. 90: 1–8

    Article  CAS  Google Scholar 

  • Nickell LG. 1964. Tissue and cell culture of sugarcane: Another research tool. Hawaii Plant Rec. 57: 223–229

    Google Scholar 

  • Pandey RN, Rastogi J, Sharma ML, Singh RK. 2011. Technologies for cost reduction in sugarcane micropropagation. Afr. J. Biotechnol. 10: 7805–7813

    Google Scholar 

  • Pasternak PT, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Onckelen HAV, Dudits D, Feher A. 2002. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol. 129: 1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Puchooa D. 2004. A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.) Afr. J. Biotechnol. 3: 253–255

    CAS  Google Scholar 

  • Qureshi JA, Saxena PK. 1992. Adventitious shoot induction and somatic embryogenesis in several varieties of hybrid seed geranium (Pelargonium x hortorum Bailey). Plant Cell Rep. 11: 443–448

    Article  Google Scholar 

  • Raghavan V. 2004. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am. J. Bot. 91: 1743–1756

    Article  PubMed  CAS  Google Scholar 

  • Rhee Y, Lin H, Buell R, Childs K, Kaeppler S. 2009. A c2 allele of maize identified in regenerant-derived progeny from tissue culture results from insertion of a novel transposon. Maydica 54: 429–437

    Google Scholar 

  • Shah AH, Rashid N, Haider MS, Saleem F, Tahir M, Iqbal J. 2009. An efficient, short and cost-effective regeneration system for transformation studies of sugarcane (Saccharum officinarum L.). Pak. J. Bot. 41: 609–614

    CAS  Google Scholar 

  • Snyman SJ, Meyer GM, Richards JM, Haricharan N, Ramgareeb S, Huckett BI. 2006. Refining the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep. 25: 1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Teo CH, Tan SH, Ho CH, Faridah QZ, Othman YR, Heslop-Harrison JS, Kalendar R, Schulman AH. 2005. Genome constitution and classification using retrotransposon based marker in the orphan crop banana. J. Plant Biol. 48: 96–105

    Article  CAS  Google Scholar 

  • Visser C, Qureshi JA, Saxena PK. 1992. Morphoregulatory role of thidiazuron: Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol. 99: 1704–1707

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Sorensen EL, Liang GH. 1988. The effects of kinetin on callus characters in alfalfa (Medicago sativa L.). Euphytica 39: 249–254

    Article  CAS  Google Scholar 

  • Wessler SR. 1996. Plant retrotransposons: Turn on by stress. Curr. Biol. 8: 959–961

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saboohi Raza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raza, S., Qamarunisa, S., Hussain, M. et al. Regeneration in sugarcane via somatic embryogenesis and genomic instability in regenerated plants. J. Crop Sci. Biotechnol. 15, 131–136 (2012). https://doi.org/10.1007/s12892-011-0111-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-011-0111-6

Key words

Navigation