Skip to main content

Advertisement

Log in

Synthesis and Electrochemical Activity of Carbon-Supported Trimetallic Ir95-xPd5Ptx Nanoparticles as Bifunctional Catalysts for Oxygen Evolution/Reduction Reactions

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Regenerative fuel cells and metal-air batteries are plausible green energy devices for replacing conventional fossil fuel-based energy systems. These energy devices demand potential bifunctional electrocatalysts for proficient functions. Therefore, identifying an efficient bifunctional electrocatalyst working in the acidic environment seems promising to realize the practicability. In this line, the carbon-supported Ir95-xPd5Ptx (x = 30, 45, and 65) trimetallic nanoparticles were prepared by both in situ and ex situ methods and studied their oxygen evolution reactions (OER) and oxygen reduction reactions (ORR). The structural and morphological features of Ir95-xPd5Ptx/C (x = 30, 45, and 65) nanoparticles were studied using XRD and TEM analysis. The percentage of Ir95-xPd5Ptx nanoparticles in the carbon support was revealed by thermogravimetric analyses (TGA) and elemental mapping analysis. Among the prepared compositions, the Ir50Pd5Pt45/C composite synthesized by the in situ method delivers a high limiting current density of 5.151 mA/cm2, half-wave potential of 0.931 V vs. RHE, and a Tafel slope of 121 mV/dec for ORR. Similarly, it performed well in oxygen evolution by providing a low overpotential of 380 mV vs. RHE at 10 mA/cm2 with a Tafel slope of 127 mV/dec. Thus, the in situ synthesized Ir50Pd5Pt45/C can be used as the potential bifunctional electrocatalyst in an acidic environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Integration of conventional energy systems for multigeneration (2020)

  2. K. Giagloglou, B.E. Hayden, Chem. Sci. 10, 4609 (2019)

    Article  Google Scholar 

  3. I. Staffell, D. Scamman, A. Velazquez Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shah, and K. R. Ward, Energy Environ. Sci. 12, 463 (2019)

  4. R. Mori, Electrochem. Energy Rev. 3, 344 (2020)

    Article  CAS  Google Scholar 

  5. M.S. Ahmed, B. Choi, Y. Kim, Sci. Rep. 8, 1 (2018)

    Google Scholar 

  6. K. Kusada, D. Wu, T. Yamamoto, T. Toriyama, S. Matsumura, W. Xie, M. Koyama, S. Kawaguchi, Y. Kubota, H. Kitagawa, Chem. Sci. 10, 652 (2019)

    Article  CAS  Google Scholar 

  7. T. Wang, A. Chutia, D.J.L. Brett, P.R. Shearing, G. He, G. Chai, I.P. Parkin, Energy Environ. Sci. 14, 2639 (2021)

    Article  CAS  Google Scholar 

  8. K.S. Joya, M.A. Ehsan, N.U.A. Babar, M. Sohail, Z.H. Yamani, J. Mater. Chem. A 7, 9137 (2019)

    Article  CAS  Google Scholar 

  9. Y. Zhang, X. Xiao, D. Geng, and Y. Dai, Nano Express 1 (2020)

  10. M.H.D. Othman, T.A.T. Abdullah, M.L. Firmansyah, H.D. Setiabudi, Int. J. Hydrogen Energy 144, 20760 (2018)

    Google Scholar 

  11. M.E. Kreider, A. Gallo, S. Back, Y. Liu, S. Siahrostami, D. Nordlund, R. Sinclair, J.K. Nørskov, L.A. King, T.F. Jaramillo, A.C.S. Appl, Mater. Interfaces 11, 26863 (2019)

    Article  CAS  Google Scholar 

  12. P. Liu, G. Cheng, G. Liu, M. Sun, S. Fu, Z. Zhou, S. Han, L. Yu, J. Mater. Sci. Mater. Electron. 32, 14385 (2021)

    Article  CAS  Google Scholar 

  13. S.A. Mousavifar, M.R. Ganjali, F. Faridbod, P. Norouzi, J. Mater. Sci. Mater. Electron. 32, 8535 (2021)

    Article  CAS  Google Scholar 

  14. R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, Npj Comput. Mater. 5, 1 (2019)

    Article  Google Scholar 

  15. S.T. Rahman, S. Park, Nanotechnol. Rev. 10, 137 (2021)

    Article  CAS  Google Scholar 

  16. D. Bhalothia, L. Krishnia, S. Yang, C. Yan, W. Hsiung, K. Wang, T. Chen, Appl. Sci. 10, 1 (2020)

    Google Scholar 

  17. X. Wu, C. Tang, Y. Cheng, X. Min, S. P. Jiang, and S. Wang, Chem. - A Eur. J. (2020)

  18. N. Bhuvanendran and S. Ravichandran, Energy 211, 118695 (2020)

  19. T. Szumełda, A. Drelinkiewicz, J. Mater. Sci. 56, 392 (2021)

    Article  Google Scholar 

  20. L.G. Martin, I. Green, X. Wang, S. Pasupathi, B.G. Pollet, Electrocatalysis 4, 144 (2013)

    Article  CAS  Google Scholar 

  21. S. Shanmugapriya, P.R. Kasturi, P. Zhu, J. Zhu, C. Yan, X. Zhang, R.K. Selvan, Sustain. Energy Fuels 4, 2808 (2020)

    CAS  Google Scholar 

  22. A. Kuriganova, N. Faddeev, M. Gorshenkov, D. Kuznetsov, I. Leontyev, N. Smirnova, Processes 8, 1 (2020)

    Google Scholar 

  23. P. Rupa Kasturi, R. Harivignesh, Y. S. Lee, and R. Kalai Selvan, J. Colloid Interface Sci. 561, 358 (2020)

  24. P. Rupa, R.K. Selvan, Y.S. Lee, RSC Adv. 6, 62680 (2016)

    Article  Google Scholar 

  25. D. Fang, X. Tang, L. Yang, D. Xu, H. Zhang, S. Sun, Z. Shao, B. Yi, Nanoscale 11, 9091 (2019)

    Article  CAS  Google Scholar 

  26. O. Seo, J. Kim, S. Hiroi, C. Song, L. S. R. Kumara, A. Tayal, Y. Chen, H. Kobayashi, H. Kitagawa, and O. Sakata, Appl. Phys. Lett. 113, (2018)

  27. L. Khotseng, Oxygen reduction reduction reaction reaction (2018)

  28. R. Paul, A. K. Roy, and L. Dai, Carbonaceous materials for efficient electrocatalysis (Elsevier Inc., 2019)

  29. X. Gu, J.C.A. Camayang, S. Samira, E. Nikolla, J. Catal. 388, 130 (2020)

    Article  CAS  Google Scholar 

  30. S.M. Alia, S. Pylypenko, K.C. Neyerlin, S.S. Kocha, B.S. Pivovar, ECS Trans. 69, 883 (2015)

    Article  CAS  Google Scholar 

  31. G.C. da Silva, K.J.J. Mayrhofer, E.A. Ticianelli, S. Cherevko, J. Electrochem. Soc. 165, F1376 (2018)

    Article  Google Scholar 

  32. F. Fi, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J. Piquemal, L. Sicard, G. Viau, Chem. Soc. Rev. 47, 5187 (2018)

    Article  Google Scholar 

  33. J. Qi, L. Jiang, M. Jing, Q. Tang, G. Sun, Int. J. Hydrogen Energy 36, 10490 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Ilayaraja, Dr. Kalai Selvan, and Ms. Sheril Ann Mathew for their guidance and kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stephen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 117 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geethalakshmi, M., Ganeshbabu, M., Kalpana, D. et al. Synthesis and Electrochemical Activity of Carbon-Supported Trimetallic Ir95-xPd5Ptx Nanoparticles as Bifunctional Catalysts for Oxygen Evolution/Reduction Reactions. Electrocatalysis 13, 328–337 (2022). https://doi.org/10.1007/s12678-022-00717-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00717-7

Keywords

Navigation