Skip to main content

Advertisement

Log in

Amorphous Ni-Nb-Y Alloys as Hydrogen Evolution Electrocatalysts

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Ongoing improvements in the performance of anion exchange membranes (AEM) have renewed interest in alkaline water electrolysis for large-scale hydrogen production. New electrocatalysts are required to interface with such AEM water electrolyzers. Ni-Nb-Y amorphous and amorphous-nanocrystalline alloys were prepared by cryomilling and evaluated as electrocatalysts towards the hydrogen evolution reaction. The roles of microstructure and chemistry on catalytic activity were investigated. Characterization by X-ray diffraction and transmission electron microscopy identified Ni5Y nanocrystals finely dispersed in an amorphous Ni-Nb-Y matrix among the multiphase alloys. Capacitance measurements near open-circuit potential were used to estimate the electrochemically active surface area (ECSA) in order to elucidate the activity of various catalyst morphologies on an intrinsic basis. Enhanced intrinsic activity from these multiphase structures were found in kinetic data from Tafel and impedance spectroscopic measurements. A multiphase Ni81.3Nb6.3Y12.5 catalyst displayed the greatest catalytic activity attributed to the presence of a nanocrystalline Ni5Y secondary phase finely dispersed in the Ni-Nb-Y amorphous matrix with increased yttrium content. These preliminary results demonstrate that ball milled Ni-based amorphous-based materials are promising catalysts for electrochemical hydrogen production.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103(43), 15729–15735 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355(146), eaad4998 (2017)

    Article  PubMed  Google Scholar 

  3. R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. J.-F. Deng, H. Li, W. Wang, Progress in design of new amorphous alloy catalysts. Catal. Today 51(1), 113–125 (1999)

    Article  CAS  Google Scholar 

  5. A. Molnár, G.V. Smith, M. Bartók, Adv. Catal. 36, 329 (1989)

    Google Scholar 

  6. D.H. Kim, W.T. Kim, E.S. Park, N. Mattern, J. Eckert, Phase separation in metallic glasses. Prog. Mater. Sci. 58(8), 1103–1172 (2013)

    Article  CAS  Google Scholar 

  7. N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, L. Schultz, Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scr. Mater. 53(3), 271–274 (2005)

    Article  CAS  Google Scholar 

  8. W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses. Mater. Sci. Eng. R Reports 44(2-3), 45–89 (2004)

    Article  CAS  Google Scholar 

  9. A. Gebert, N. Mattern, U. Kühn, J. Eckert, L. Schultz, Electrode characteristics of two-phase glass-forming Ni–Nb–Y alloys. Intermetallics 15(9), 1183–1189 (2007)

    Article  CAS  Google Scholar 

  10. W.L. Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30(2), 81–134 (1986)

    Article  CAS  Google Scholar 

  11. J.M. Jaksic, M.V. Vojnovic, N.V. Krstajic, Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes. Electrochim. Acta 45(25-26), 4151–4158 (2000)

    Article  CAS  Google Scholar 

  12. F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Correlation of microstructure and catalytic activity of crystalline Ni–Co–Y alloy electrode for the hydrogen evolution reaction in alkaline solution. J. Alloys Compd. 429(1-2), 270–275 (2007)

    Article  CAS  Google Scholar 

  13. F. Rosalbino, S. Delsante, G. Borzone, E. Angelini, Electrocatalytic behaviour of Co–Ni–R (R=Rare earth metal) crystalline alloys as electrode materials for hydrogen evolution reaction in alkaline medium. Int. J. Hydrog. Energy 33(22), 6696–6703 (2008)

    Article  CAS  Google Scholar 

  14. F. Rosalbino, D. Macciò, A. Saccone, E. Angelini, S. Delfino, Fe–Mo–R (R = rare earth metal) crystalline alloys as a cathode material for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 36(3), 1965–1973 (2011)

    Article  CAS  Google Scholar 

  15. D.M.F. Santos, C.A.C. Sequeira, D. Macciò, A. Saccone, J.L. Figueiredo, Platinum–rare earth electrodes for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrog. Energy 38(8), 3137–3145 (2013)

    Article  CAS  Google Scholar 

  16. D.M.F. Santos, L. Amaral, B. Sljukic, D. Macciò, A. Saccone, C.A.C. Sequeira, J. Electrochem. Soc. 161, 386 (2014)

    Article  CAS  Google Scholar 

  17. R. Simpraga, B.E. Conway, Realization of monolayer levels of surface oxidation of nickel by anodization at low temperatures. J. Electroanal. Chem. 280(2), 341–357 (1990)

    Article  CAS  Google Scholar 

  18. C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Q. Ni, D.W. Kirk, S.J. Thorpe, Interpreting impedance spectra in the time constant domain: Application to the characterization of passive films. ECS Trans. 66(27), 15–23 (2015)

    Article  CAS  Google Scholar 

  20. S. Ghobrial, D.W. Kirk, S.J. Thorpe, Electrocatalytic activity of amorphous Ni-Nb-Y alloys for the HER in alkaline water electrolysis. ECS Trans. 85(11), 107–117 (2018)

    Article  CAS  Google Scholar 

  21. C. Suryanarayana, A. Inoue, Bulk metallic glasses (CRC Press, Boca Raton, 2011)

    Google Scholar 

  22. S. Katagiri, N. Ishizawa, A new high temperature modification of face-centered cubic Y2O3. Powder Diffract. 8(01), 60 (1993)

    Article  CAS  Google Scholar 

  23. A.E. Dwight, Trans. Am. Soc. Met. 53, 479 (1961)

    CAS  Google Scholar 

  24. J. Van Drunen, B.K. Pilapil, Y. Makonnen, D. Beauchemin, B.D. Gates, G. Jerkiewicz, Electrochemically active nickel foams as support materials for nanoscopic platinum electrocatalysts. ACS Appl. Mater. Interfaces 6(15), 12046–12061 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. J.O.M. Bockris, S. Srinivasan, Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors. Electrochim. Acta 9(1), 31–44 (1964)

    Article  CAS  Google Scholar 

  26. M.M. Jakšić, Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases. Electrochim. Acta 29(11), 1539–1550 (1984)

    Article  Google Scholar 

  27. M.M. Jaksic, Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory. J. Mol. Catal. 38(1-2), 161–202 (1986)

    Article  CAS  Google Scholar 

  28. T. Kitamura, C. Iwakura, H. Tamura, Chem. Lett. 5, 965 (1981)

    Article  Google Scholar 

  29. K.-I. Machida, M. Enyo, G. Adachi, H. Sakaguchi, J. Shiokawa, Electrocatalysis in metal hydride electrode. II. Hydrogen electrode reaction and related properties of group-IB metal-coated LaNi5 electrodes. Bull. Chem. Soc. Jpn. 59(3), 925–926 (1986)

    Article  CAS  Google Scholar 

  30. M. Alsabet, M. Grden, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 1: Formation of α-Ni(OH)2 in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 2(4), 317–330 (2011)

    Article  CAS  Google Scholar 

  31. J.R.C. Salgado, M.H.S. Andrade, J.C.P. Silva, J. Tonholo, A voltammetric study of α- and β-hydroxides over nickel alloys. Electrochim. Acta 47(12), 1997–2004 (2002)

    Article  CAS  Google Scholar 

  32. A. Baiker, H. Baris, J.H. Güntherodt, Novel hydrogenation catalyst prepared from an amorphous Cu70Zr30precursor. J. Chem. Soc. Chem. Commun. 12, 930–932 (1986)

    Article  Google Scholar 

  33. A. Baiker, D. Gasser, J. Lenzner, J. Chem. Soc. Chem. Commun. 1750 (1987)

  34. H. Yamashita, M. Yoshikawa, T. Funabiki, S. Yoshida, J. Chem. Soc. Faraday Trans. 1(82), 1771 (1986)

    Article  Google Scholar 

  35. A. Baiker, Metallic glasses in heterogeneous catalysis. Faraday Discuss. Chem. Soc. 87, 239 (1989)

    Article  CAS  Google Scholar 

  36. M. Hirscher, J. Mossinger, H. Kronmuller, Hydrogen diffusion in nanocrystalline, mesoscopic, and microcrystalline heterogeneous alloys. J. Alloys Compd. 231(1-2), 267–273 (1995)

    Article  CAS  Google Scholar 

  37. D.S.P. Cardoso, L. Amaral, D.M.F. Santos, B. Šljukić, C.A.C. Sequeira, D. Macciò, A. Saccone, Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys. Int. J. Hydrog. Energy 40(12), 4295–4302 (2015)

    Article  CAS  Google Scholar 

  38. G. Wu, N. Li, C.S. Dai, D.R. Zhou, Electrochemical preparation and characteristics of Ni–Co–LaNi5 composite coatings as electrode materials for hydrogen evolution. Mater. Chem. Phys. 83(2-3), 307–314 (2004)

    Article  CAS  Google Scholar 

  39. W.C. Conner, J.L. Falconer, Spillover in Heterogeneous Catalysis. Chem. Rev. 95(3), 759–788 (1995)

    Article  CAS  Google Scholar 

  40. A.J. Bard, Electrochemical Methods (John Wiley & Sons, Hoboken, 2001)

    Google Scholar 

  41. M.P. Marceta Kaninski, V.M. Nikolic, G.S. Tasic, Z.L. Rakocevic, Electrocatalytic activation of Ni electrode for hydrogen production by electrodeposition of Co and V species. Int. J. Hydrog. Energy 34(2), 703–709 (2009)

    Article  CAS  Google Scholar 

  42. V.M. Nikolic, S.L. Maslovara, G.S. Tasic, T.P. Brdaric, P.Z. Lausevic, B.B. Radak, M.P. Marceta Kaninski, Kinetics of hydrogen evolution reaction in alkaline electrolysis on a Ni cathode in the presence of Ni–Co–Mo based ionic activators. Appl. Catal. B Environ. 179, 88–94 (2015)

    Article  CAS  Google Scholar 

  43. S. Martinez, M. Metikoš-Huković, L. Valek, Electrocatalytic properties of electrodeposited Ni–15Mo cathodes for the HER in acid solutions: Synergistic electronic effect. J. Mol. Catal. A Chem. 245(1-2), 114–121 (2006)

    Article  CAS  Google Scholar 

  44. I. Herraiz-Cardona, E. Ortega, V. Pérez-Herranz, Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochim. Acta 56(3), 1308–1315 (2011)

    Article  CAS  Google Scholar 

  45. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films. J. Electrochem. Soc. 157(452), C452 (2010)

    Article  CAS  Google Scholar 

  46. M.E. Orazem, B. Tribollet, Electrochemical impedance spectroscopy (John Wiley & Sons, Hoboken, 2008)

    Book  Google Scholar 

  47. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Toronto, Dept. of Materials Science and Engineering, as well as the Surface Engineering and Electrochemistry (SEE) Research Group. They also acknowledge the assistance from Prof. T. Bender in the Department of Chemical Engineering and Applied Chemistry at the University of Toronto for the use of their laboratory equipment. The authors acknowledge the integral structural characterization work by Dr. S. Prabhudev (Canadian Centre for Electron Microscopy) and Dr. G. Botton (Canada Research Chair in Electron Microscopy of Nanoscale Materials, Dept. of Materials Science and Engineering, McMaster University). The TEM research described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies.

Funding

The authors gratefully acknowledge the financial support from the Natural Science and Engineering Research Council of Canada (NSERC Discovery Frontiers Grant) through the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen’s University and supported by Grant No. RGPNM 477963-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghobrial.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobrial, S., Kirk, D.W. & Thorpe, S.J. Amorphous Ni-Nb-Y Alloys as Hydrogen Evolution Electrocatalysts. Electrocatalysis 10, 243–252 (2019). https://doi.org/10.1007/s12678-019-00519-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00519-4

Keywords

Navigation