Skip to main content
Log in

Investigating the Kinetics and Mechanism of Organic Oxidation in Parallel with the Oxygen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this paper, the mechanism of organic oxidation in parallel with the oxygen evolution reaction at an electrode following the “active” anode mechanism is investigated. The active anode (IrO2-Sb2O5-SnO2/Ti) was prepared via standard thermal decomposition method and 4-nitrophenol (4-NP) chosen as the model organic compound. It is firstly confirmed that this anode does follow the “active” anode mechanism, with the rate of 4-NP oxidation being dependent on the coverage adsorbed oxygen on the surface of the anode. This surface coverage can be estimated by fitting steady-state polarisation curves with a micro-kinetic model describing the oxygen evolution behaviour of the anode. This surface coverage dependent oxidation rate can only be observed at relatively low overpotentials where mass transport limitations are avoided. At high overpotentials, the rate of oxidation is completely controlled by mass transfer of 4-NP to the anode surface, with the measured and calculated rate constants agreeing closely. It is also shown that the instantaneous current efficiency can be directly calculated from the measured pseudo first-order rate constant in both the kinetic and mass transport limited regimes. Using this analysis method, it was found that the instantaneous current efficiency for 4-NP oxidation is less than 100% in both regimes and only approached 100% at very low overpotentials. This finding is important as in prior literature, it is often believed that the instantaneous current efficiency of electrochemical wastewater oxidation will be 100% provided that mass transfer does not limit the process, due to an underlying assumption that the rate of organic oxidation is much larger than the OER.

The surface coverage of intermediates of the oxygen evolution reaction control the oxidation rate of 4-nitrophenol

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 53(1), 51–59 (1999)

    Article  CAS  Google Scholar 

  2. S. Parsons. Advanced oxidation processes for water and wastewater treatment (IWA, London, 2004)

    Google Scholar 

  3. A. Sonune, R. Ghate, Developments in wastewater treatment methods. Desalination. 167, 55–63 (2004)

    Article  CAS  Google Scholar 

  4. R. Helmer, I. Hespanhol. Water pollution control: A guide to the use of water quality management principles, 1st edn. (E&FN Spon, London, 1997)

    Google Scholar 

  5. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, L. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83(6), 769–776 (2008)

    Article  CAS  Google Scholar 

  6. I. Sires, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21(14), 8336–8367 (2014)

    Article  CAS  Google Scholar 

  7. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 44(23), 2577–2641 (2014)

    Article  CAS  Google Scholar 

  8. O.J. Murphy, G.D. Hitchens, L. Kaba, C.E. Verostko, Direct electrochemical oxidation of organics for waste-water treatment. Water Res. 26(4), 443–451 (1992)

    Article  CAS  Google Scholar 

  9. C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim. Acta. 39(11–12), 1857–1862 (1994)

    Article  CAS  Google Scholar 

  10. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109(12), 6541–6569 (2009)

    Article  CAS  Google Scholar 

  11. C.A. Martínez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35(12), 1324–1340 (2006)

    Article  Google Scholar 

  12. Á. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste-water treatment: Fundamentals and review of applications. J. Chem. Technol. Biotechnol. 84(12), 1747–1755 (2009)

    Article  CAS  Google Scholar 

  13. B. Adams, M. Tian, A. Chen, Design and electrochemical study of2-based mixed oxide electrodes. Electrochim. Acta. 54(5), 1491–1498 (2009)

    Article  CAS  Google Scholar 

  14. B.J. Hernlem, Electrolytic destruction of urea in dilute chloride solution using DSA electrodes in a recycled batch cell. Water Res. 39(11), 2245–2252 (2005)

    Article  CAS  Google Scholar 

  15. C.A. Martínez-Huitle, S. Ferro, A. De Battisti, Electrochemical incineration of oxalic acid - Role of electrode material. Electrochim. Acta. 49(22-23), 4027–4034 (2004)

    Article  Google Scholar 

  16. M. Panizza, P.A. Michaud, G. Cerisola, C. Comninellis, Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. 507(1–2), 206–214 (2001)

    Article  CAS  Google Scholar 

  17. A.M. Polcaro, A. Vacca, S. Palmas, M. Mascia, Electrochemical treatment of wastewater containing phenolic compounds: Oxidation at boron-doped diamond electrodes. J. Appl. Electrochem. 33(10), 885–892 (2003)

    Article  CAS  Google Scholar 

  18. A.M. Polcaro, M. Mascia, S. Palmas, A. Vacca, Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochim. Acta. 49(4), 649–656 (2004)

    Article  CAS  Google Scholar 

  19. O. Simond, C. Comninellis, Anodic oxidation of organics on Ti/IrO2 anodes using Nafionas electrolyte. Electrochim. Acta. 42(13–14), 2013–2018 (1997)

    Article  CAS  Google Scholar 

  20. M. Tian, L. Bakovic, A.C. Chen, Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics. Electrochim. Acta. 52(23), 6517–6524 (2007)

    Article  CAS  Google Scholar 

  21. P. Cañizares, C. Saez, J. Lobato, M.A. Rodrigo, Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes. Indus. Eng. Chem. Res. 43(9), 1944–1951 (2004)

    Article  Google Scholar 

  22. L.S. Andrade, T.T. Tasso, D.L. da Silva, R.C. Rocha, N. Bocchi, S.R. Biaggio, On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the reactive orange 16 dye. Electrochim. Acta. 54(7), 2024–2030 (2009)

    Article  CAS  Google Scholar 

  23. C. Bock, B. MacDougall, The electrochemical oxidation of organics using tungsten oxide based electrodes. Electrochim. Acta. 47(20), 3361–3373 (2002)

    Article  CAS  Google Scholar 

  24. F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, A. De Battisti, Electrochemical incineration of glucose as a model organic substrate - II role of active chlorine mediation. J. Electrochem. Soc. 147 (2), 592–596 (2000)

    Article  CAS  Google Scholar 

  25. S. Fierro, L. Ouattara, E.H. Calderon, E. Passas-Lagos, H. Baltruschat, C. Comninellis, Investigation of formic acid oxidation on Ti/IrO2 electrodes. Electrochim. Acta. 54(7), 2053–2061 (2009)

    Article  CAS  Google Scholar 

  26. R.J. Watts, M.S. Wyeth, D.D. Finn, A.L. Teel, Optimization of Ti/SnO2-Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J. Appl. Electrochem. 38(1), 31–37 (2008)

    Article  CAS  Google Scholar 

  27. P. Cañizares, J. García-Gómez, J. Lobato, M.A. Rodrigo, Modeling of wastewater electro-oxidation processes part I. General description and application to inactive electrodes. Indus. Eng. Chem. Res. 43(9), 1915–1922 (2004)

    Article  Google Scholar 

  28. M. Mascia, A. Vacca, S. Palmas, A.M. Polcaro, Kinetics of the electrochemical oxidation of organic compounds at BDD anodes: Modelling of surface reactions. J. Appl. Electrochem. 37(1), 71–76 (2007)

    Article  CAS  Google Scholar 

  29. O. Simond, V. Schaller, C. Comninellis, Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta. 42(13-14), 2009–2012 (1997)

    Article  CAS  Google Scholar 

  30. P. Cañizares, J. García-Gómez, J. Lobato, M.A. Rodrigo, Modeling of wastewater electro-oxidation processes part II. Application to active electrodes. Indus. Eng. Chem. Res. 43(9), 1923–1931 (2004)

    Article  Google Scholar 

  31. O. Scialdone, Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim. Acta. 54(26), 6140–6147 (2009)

    Article  CAS  Google Scholar 

  32. M.A. Rodrigo, P.A. Michaud, I. Duo, M. Panizza, G. Cerisola, C. Comninellis, Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148(5), D60–D64 (2001)

    Article  CAS  Google Scholar 

  33. H.B. Beer, The invention and industrial-development of metal anodes. J. Electrochem. Soc. 127(8), C303–C307 (1980)

    Article  Google Scholar 

  34. A.F. Gil, L. Galicia, I. Gonzalez, Diffusion coefficients and electrode kinetic parameters of different Fe(III)-sulfate complexes. J. Electroanal. Chem. 417(1-2), 129–134 (1996)

    Article  CAS  Google Scholar 

  35. U.K. Klaning, K. Sehested, J. Holcman, Standard Gibbs energy of formation of the hydroxyl radical in aqueous solution. Rate constants for the reaction \(\text {ClO}_{2}^{-} + \text {O}_{3} \rightleftharpoons \text {O}_{3}^{-} + \text {ClO}_{2}\). J. Phys. Chem. 89(5), 760–763 (1985)

    Article  CAS  Google Scholar 

  36. C. De Pauli, S. Trasatti, Composite materials for electrocatalysis of O2 evolution IrO2 + SnO2 in acid solution. J. Electroanal. Chem. 538–539, 145–151 (2002)

    Article  Google Scholar 

  37. J. O’M Bockris, Kinetics of activation controlled consecutive electrochemical reactions: Anodic evolution of oxygen. J. Chem. Phys. 24(4), 817–827 (1956)

    Article  Google Scholar 

  38. C. De Pauli, S. Trasatti, Electrochemical surafce characterization of IrO2 + SnO2 mixed oxide electrodes. J. Electroanal. Chem. 396, 161–168 (1995)

    Article  Google Scholar 

  39. A.T. Marshall, L. Vaisson-Béthune, Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem. Commun. 61, 23–26 (2015)

    Article  CAS  Google Scholar 

  40. E. Gileadi, Problems in interfacial electrochemistry that have been swept under the carpet. J. Solid State Electrochem. 15(7–8), 1359–1371 (2011)

    Article  CAS  Google Scholar 

  41. R. Niesner, A. Heintz, Diffusion coefficients of aromatics in aqueous solution. J. Chem. Eng. Data. 45(6), 1121–1124 (2000)

    Article  CAS  Google Scholar 

  42. A. Kapalka, G. Foti, C. Comninellis, Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 38(1), 7–16 (2008)

    Article  CAS  Google Scholar 

  43. J. Lea, A.A. Adesina, Oxidative degradation of 4-nitrophenol in UV-illuminated titania suspension. J. Chem. Technol. Biotechnol. 76(8), 803–810 (2001)

    Article  CAS  Google Scholar 

  44. S. Chaliha, K.G. Bhattacharyya, P. Paul, Oxidation of 4-nitrophenol in water over Fe(III) Co(II), and Ni(II) impregnated MCM41 catalysts. J. Chem. Technol. Biotechnol. 83(10), 1353–1363 (2008)

    Article  CAS  Google Scholar 

  45. J. Cornard, Rasmiwetti, J. Merlin, Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV–visible, Raman, DFT and TD-DFT calculations. Chem. Phys. 309(2–3), 239–249 (2005)

    Article  CAS  Google Scholar 

  46. M.I. Sirajuddin, A. Niaz, A. Shah, A. Rauf, Bhanger Ultra-trace level determination of hydroquinone in waste photographic solutions by UV–vis spectrophotometry. Talanta. 72(2), 546–553 (2007)

    Article  CAS  Google Scholar 

  47. M.A. Oturan, J. Peiroten, P. Chartrin, A.J. Acher, Complete destruction of p-nitrophenol in aqueous medium by electro-fenton method. Environ. Sci. Technol. 34(16), 3474–3479 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron T. Marshall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariman, A., Marshall, A.T. Investigating the Kinetics and Mechanism of Organic Oxidation in Parallel with the Oxygen Evolution Reaction. Electrocatalysis 9, 31–39 (2018). https://doi.org/10.1007/s12678-017-0417-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0417-3

Keywords

Navigation