Skip to main content
Log in

Effect of TiO2 Content on Ethanol Electrooxidation in Alkaline Media Using Pt Nanoparticles Supported on Physical Mixtures of Carbon and TiO2 as Electrocatalysts

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Pt nanoparticles supported on physical mixtures of carbon and TiO2 (Pt/(C + TiO2) electrocatalyst) were tested for ethanol electrooxidation in alkaline media. The electrocatalysts were prepared with different C/TiO2 mass ratios using borohydride as reducing agent. X-ray diffraction patterns of the obtained materials showed the peak characteristic of Pt face-centered cubic (fcc) structure, carbon, and TiO2 phases. Transmission electron micrographs showed metal nanoparticles distributed preferentially over TiO2 support with average particle size between 5 and 7 nm for all electrocatalysts. The cyclic voltammograms of Pt/(C + TiO2) electrocatalysts in alkaline media showed a decrease of Pt surface area with the increase of TiO2 content. The electrooxidation of ethanol suggests the Pt/(C + TiO2) (40:60) as the most promising electrocatalyst for use in fuel cells since it presents almost the same current density value as that of the others and also slower current density decay in chronoamperometry. Moreover, TiO2 provides oxygen species to promote the CO oxidation, resulting in more activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Brouzgou, S.Q. Song, P. Tsiakaras, Appl. Catal. B Environ. 127, 371–388 (2012)

    Article  CAS  Google Scholar 

  2. H. Karimäki, L.C. Pérez, K. Nikiforow, T.M. Keränen, J. Viitakangas, J. Ihonen, Int. J. Hydrog. Energy 36, 10179–10187 (2011)

    Article  Google Scholar 

  3. E. Antolini, Energy Environ. Sci. 2, 915–931 (2009)

    Article  CAS  Google Scholar 

  4. S.Y. Shen, T.S. Zhao, Q.X. Wu, Int. J. Hydrogen Energy 37, 575–582 (2012)

    Article  CAS  Google Scholar 

  5. J. Tayal, B. Rawat, S. Basu, Int. J. Hydrog. Energy 37, 4597–4605 (2012)

    Article  CAS  Google Scholar 

  6. E.M. Cunha, J. Ribeiro, K.B. Kokoh, A.R. de Andrade, Int. J. Hydrog. Energy 36, 11034–11042 (2011)

    Article  CAS  Google Scholar 

  7. F.E. Teran, D.M. Santos, J. Ribeiro, K.B. Kokoh, Thin Solid Films 520, 5846–5850 (2012)

    Article  CAS  Google Scholar 

  8. C. Carrareto Caliman, L.M. Palma, J. Ribeiro, J. Electrochem. Soc. 160, F853–F858 (2013)

    Article  Google Scholar 

  9. J. Ribeiro, D.M. dos Anjos, K.B. Kokoh, C. Coutanceau, J.M. Léger, P. Olivi, A.R. de Andrade, G. Tremiliosi-Filho, Electrochim. Acta 52, 6997–7006 (2007)

    Article  CAS  Google Scholar 

  10. J.C.M. Silva, B. Anea, R.F.B. De Souza, M.H.M.T. Assumpcao, M.L. Calegaro, A.O. Neto, M.C. Santos, J. Braz. Chem. Soc. 24, 1553–1560 (2013)

    CAS  Google Scholar 

  11. G. Wang, Y. Weng, D. Chu, D. Xie, R. Chen, J. Membr. Sci. 326, 4–8 (2009)

    Article  CAS  Google Scholar 

  12. G. Wang, Y. Weng, D. Chu, R. Chen, D. Xie, J. Membr. Sci. 332, 63–68 (2009)

    Article  CAS  Google Scholar 

  13. L. An, T.S. Zhao, Int. J. Hydrogen Energy 36, 9994–9999 (2011)

    Article  CAS  Google Scholar 

  14. A.D. Modestov, M.R. Tarasevich, A.Y. Leykin, V.Y. Filimonov, J. Power Sources 188, 502–506 (2009)

    Article  CAS  Google Scholar 

  15. N. Fujiwara, Z. Siroma, S.-i. Yamazaki, T. Ioroi, H. Senoh, K. Yasuda, J. Power Sources 185, 621–626 (2008)

    Article  CAS  Google Scholar 

  16. V. Selvaraj, M. Alagar, Electrochem. Commun. 9, 1145–1153 (2007)

    Article  CAS  Google Scholar 

  17. T. Ioroi, Z. Siroma, N. Fujiwara, S.-i. Yamazaki, K. Yasuda, Electrochem. Commun. 7, 183–188 (2005)

    Article  CAS  Google Scholar 

  18. Y.-H. Qin, H.-H. Yang, R.-L. Lv, W.-G. Wang, C.-W. Wang, Electrochim. Acta 106, 372–377 (2013)

    Article  CAS  Google Scholar 

  19. H. Kangasniemi, D.A. Condit, T.D. Jarvi, J. Electrochem. Soc. 151, E125–E132 (2004)

    Article  CAS  Google Scholar 

  20. L.M. Roen, C.H. Paik, T.D. Jarvi, Electrochem. Solid-State Lett. 7, A19–A22 (2004)

    Article  CAS  Google Scholar 

  21. J. Liu, J. Ye, C. Xu, S.P. Jiang, Y. Tong, Electrochem. Commun. 9, 2334–2339 (2007)

    Article  CAS  Google Scholar 

  22. R.N. Singh, A. Singh, Anindita, Carbon 47, 271–278 (2009)

    Article  CAS  Google Scholar 

  23. A.O. Neto, M. Linardi, D.M. dos Anjos, G. Tremiliosi, E.V. Spinace, J. Appl. Electrochem. 39, 1153–1156 (2009)

    Article  Google Scholar 

  24. R.F.B. De Souza, M.M. Tusi, M. Brandalise, R.R. Dias, M. Linardi, E.V. Spinace, M.C. dos Santos, A.O. Neto, Int. J. Electrochem. Sci. 5, 895–902 (2010)

    Google Scholar 

  25. R.M. Piasentin, E.V. Spinace, M.M. Tusi, A.O. Neto, Int. J. Electrochem. Sci. 6, 2255–2263 (2011)

    CAS  Google Scholar 

  26. J.C. Castro, M.H.M.T. Assumpção, R.F.B. Souza, E.V. Spinacé, A.O. Neto, Electrocatal 4, 159–166 (2013)

    Article  CAS  Google Scholar 

  27. S. Donthu, M. Cai, M. Ruthkosky, I. Halalay, Chem. Commun. 45, 4203–4205 (2009)

    Article  Google Scholar 

  28. B. Moreno, E. Chinarro, J.L.G. Fierro, J.R. Jurado, J. Power Sources 169, 98–102 (2007)

    Article  CAS  Google Scholar 

  29. H. Hua, C. Hu, Z. Zhao, H. Liu, X. Xie, Y. Xi, Electrochim. Acta 105, 130–136 (2013)

    Article  CAS  Google Scholar 

  30. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C: Photochem. Rev 13, 169–189 (2012)

    Article  CAS  Google Scholar 

  31. Y. Ito, T. Takeuchi, T. Tsujiguchi, M.A. Abdelkareem, N. Nakagawa, J. Power Sources 242, 280–288 (2013)

    Article  CAS  Google Scholar 

  32. K. Ding, Y. Wang, H. Yang, C. Zheng, YanliCao, H. Wei, Y. Wang, Z. Guo, Electrochim. Acta 100, 147–156 (2013)

    Article  CAS  Google Scholar 

  33. B. Habibi, E. Dadashpour, Int. J. Hydrogen Energy 38, 5425–5434 (2013)

    Article  CAS  Google Scholar 

  34. Z.-H. Wang, J. Li, X. Dong, D. Wang, T. Chen, H. Qiao, A. Huang, Int. J. Hydrogen Energy 33, 6143–6149 (2008)

    Article  CAS  Google Scholar 

  35. R.M. Piasentin, R.F.B. de Souza, J.C.M. Silva, E.V. Spinacé, M.C. Santos, A.O. Neto, Int. J. Electrochem. Sci. 8, 435–445 (2013)

    CAS  Google Scholar 

  36. J. Nandenha, R.F.B. Souza, M.H.M.T. Assumpção, E.V. Spinacé, A.O. Neto, Ionics 19, 1207–1213 (2013)

  37. T. Herranz, S. García, M.V. Martínez-Huerta, M.A. Peña, J.L.G. Fierro, F. Somodi, I. Borbáth, K. Majrik, A. Tompos, S. Rojas, Int. J. Hydrogen Energy 37, 7109–7118 (2012)

    Article  CAS  Google Scholar 

  38. E.V. Spinacé, R. Dias, M. Brandalise, M. Linardi, A. Neto, Ionics 16, 91–95 (2010)

    Article  Google Scholar 

  39. N. Li, Q.-Y. Chen, L.-F. Luo, W.-X. Huang, M.-F. Luo, G.-S. Hu, J.-Q. Lu, Appl. Catal. B 142–143, 523–532 (2013)

    Article  Google Scholar 

  40. A.W. Burton, K. Ong, T. Rea, I.Y. Chan, Microporous Mesoporous Mater. 117, 75–90 (2009)

    Article  CAS  Google Scholar 

  41. S.C. Zignani, V. Baglio, J.J. Linares, G. Monforte, E.R. Gonzalez, A.S. Aricò, Electrochim. Acta 70, 255–265 (2012)

    Article  CAS  Google Scholar 

  42. D.R.M. Godoi, J. Perez, H.M. Villullas, J. Power Sources 195, 3394–3401 (2010)

    Article  CAS  Google Scholar 

  43. D.-H. Lim, D.-H. Choi, W.-D. Lee, H.-I. Lee, Appl. Catal. B Environ. 89, 484–493 (2009)

    Article  CAS  Google Scholar 

  44. Z. Xu, H. Zhang, H. Zhong, Q. Lu, Y. Wang, D. Su, Appl. Catal. B 111–112, 264–270 (2012)

    Article  Google Scholar 

  45. B. Abida, L. Chirchi, S. Baranton, T.W. Napporn, H. Kochkar, J.-M. Léger, A. Ghorbel, Appl. Catal. B 106, 609–615 (2011)

    Article  CAS  Google Scholar 

  46. Y. Fan, Z. Yang, P. Huang, X. Zhang, Y.-M. Liu, Electrochim. Acta 105, 157–161 (2013)

    Article  CAS  Google Scholar 

  47. J.A. Horsley, J. Am. Chem. Soc. 101, 2870–2874 (1979)

    Article  CAS  Google Scholar 

  48. S.J. Tauster, Acc. Chem. Res. 20, 389–394 (1987)

    Article  CAS  Google Scholar 

  49. M.G. Sanchez, J.L. Gazquez, J. Catal. 104, 120–135 (1987)

    Article  CAS  Google Scholar 

  50. S. Tang, G. Xiong, H. Wang, J. Catal. 111, 136–145 (1988)

    Article  Google Scholar 

  51. A. Lewera, L. Timperman, A. Roguska, N. Alonso-Vante, J. Phys. Chem. C 115, 20153–20159 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Jorge M. Vaz from IPEN-CNEN/SP for the TiO2 sample, Laboratório de Microscopia do Centro de Ciências e Tecnologia de Materiais (CCTM) for the TEM measurements, and FAPESP (2011/18246-0, 2012/22731-4, 2012/03516-5, 2013/01577-0) and CNPq (150639/2013-9) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. M. T. Assumpção.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Souza, R.F.B., Buzzo, G.S., Silva, J.C.M. et al. Effect of TiO2 Content on Ethanol Electrooxidation in Alkaline Media Using Pt Nanoparticles Supported on Physical Mixtures of Carbon and TiO2 as Electrocatalysts. Electrocatalysis 5, 213–219 (2014). https://doi.org/10.1007/s12678-014-0183-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0183-4

Keywords

Navigation