Skip to main content
Log in

High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Formic acid oxidation was studied on a new prepared Pt2Bi characterized by X-ray diffraction spectroscopy (phase composition), scanning tunneling microscopy (STM) (surface morphology), and COads stripping voltammetry (surface composition). Bulk composition of Pt2Bi revealed two phases—55% PtBi alloy and 45% Pt. Estimated contribution of pure Pt on the Pt2Bi surface (43.5%) determined by COads stripping voltammetry corresponds closely to bulk composition. Pt2Bi reveals high activity and stability in formic acid oxidation. High activity originates from the fact that formic acid oxidation proceeds completely through dehydrogenation path based on an ensemble effect. The high stability of Pt2Bi surface is induced by the suppression of Bi leaching as it was evidenced by insignificant changes of surface morphology and surface roughness shown by STM images before and after electrochemical treatment in formic acid containing solution. Pt2Bi is found to be powerful catalyst exhibiting up to two orders of magnitude larger current densities at 0.0 V and onset potential shifted for ∼0.2 V to more negative value relative to Pt under steady-state condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Wang, J.-M. Hu, I.-M. Hsing, J Electroanal Chem 562, 73 (2004)

    Article  CAS  Google Scholar 

  2. J. Willsau, J. Heitbaum, Electrochim Acta 31, 943 (1986)

    Article  CAS  Google Scholar 

  3. A. Capon, R. Parsons, J. Electroanal. Chem. 44, 1 (1973)

    Article  CAS  Google Scholar 

  4. P.K. Babu, H.S. Kim, J.H. Chung, E. Oldfield, A. Wieckowski, J Phys Chem B 108, 20228 (2004)

    Article  CAS  Google Scholar 

  5. A. Cuesta, M. Escudero, B. Lanova, H. Baltruschat, Langmuir 25, 6500 (2009)

    Article  CAS  Google Scholar 

  6. D. Volpe, E. Casado-Rivera, L. Alden, C. Lind, K. Hagerdon, C. Downie, C. Korzniewski, F.J. DiSalvo, H.D. Abruna, J Electrochem Soc 151, A971 (2004)

    Article  CAS  Google Scholar 

  7. E. Casado-Rivera, D.J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A.C.D. Angelo, F.J. DiSalvo, H.D. Abruna, J Am Chem Soc 126, 4043 (2004)

    Article  CAS  Google Scholar 

  8. C. Roychowdhury, F. Matsumoto, V.B. Zeldovich, S.C. Warren, P.F. Mutolo, M.J. Ballesteros, U. Wiesner, H.D. Abruna, F.J. DiSalvo, Chem Mater 18, 3365 (2006)

    Article  CAS  Google Scholar 

  9. H. Wang, L. Alden, F.J. DiSalvo, H.D. Abruna, Phys Chem Chem Phys 10, 3739 (2008)

    Article  CAS  Google Scholar 

  10. J. Sanabria-Chinchilla, H. Abe, F.J. DiSalvo, H.D. Abruna, Surf Sci 602, 1830 (2008)

    Article  CAS  Google Scholar 

  11. A.V. Tripković, K.D. Popović, R.M. Stevanović, R. Socha, A. Kowal, Electrochem Comm 8, 1492 (2006)

    Article  Google Scholar 

  12. E. Herrero, A. Fernandez-Vega, J.M. Feliu, A. Aldaz, J Electroanal Chem 350, 73 (1993)

    Article  CAS  Google Scholar 

  13. L.R. Alden, D.K. Han, F. Matsumoto, H.D. Abruna, F.J. DiSalvo, Chem Mater 18, 5591 (2006)

    Article  CAS  Google Scholar 

  14. E. Casado-Rivera, Z. Gal, A.C.D. Angelo, C. Lind, F.J. DiSalvo, H.D. Abruna, Chem Phys Chem 4, 193 (2003)

    Article  CAS  Google Scholar 

  15. N. de-los-Santos-Alvarez, L.R. Alden, E. Rus, H. Wang, F.J. DiSalvo, H.D. Abruna, J Electroanal Chem 626, 14 (2009)

    Article  CAS  Google Scholar 

  16. D.R. Blasini, D. Rochefort, E. Fachini, L.R. Alden, F.J. DiSalvo, C.R. Cabrera, H.D. Abruna, Surf Sci 600, 2670 (2006)

    Article  CAS  Google Scholar 

  17. H. Okamoto (ed) (1990) “Bi–Pt phase diagram” APD program. In: Binary alloy phase diagrams. ASM International, Materials Park, OH. p. 778

  18. A.X.S. Bruker, TOPAS V2.1: general profile and structure analysis software for powder diffraction data, user manual. Bruker AXS, Karlsruhe, Germany (2003)

  19. M. Oana, R. Hoffmann, H.D. Abruna, F.J. DiSalvo, Surf Sci 574, 1 (2005)

    Article  CAS  Google Scholar 

  20. T.J. Schmidt, B.N. Grgur, R.J. Behm, N.M. Marković, P.N. Ross Jr., Phys Chem Chem Phys 2, 4379 (2000)

    Article  CAS  Google Scholar 

  21. N.P. Lebedeva, M.T.M. Koper, E. Herrero, J.M. Feliu, R.A. van Santen, J Electroanal Chem 487, 37 (2000)

    Article  CAS  Google Scholar 

  22. J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Phys Rev Lett 93, 156801 (2004)

    Article  CAS  Google Scholar 

  23. J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, J Chem Phys 120, 10240 (2004)

    Article  CAS  Google Scholar 

  24. D. Jarvi, E.M. Stuve (1998) In: J. Lipkowski and P.N. Ross (eds) Electrocatalysis. New York, Wiley-VCH

  25. A. Miki, S. Ye, M. Osawa, Chem Commun 1500 (2002)

  26. M. Arenz, V. Stamenković, T.J. Schmidt, K. Wandelt, P.N. Ross, N.M. Marković, Phys Chem Chem Phys 5, 4242 (2003)

    Article  CAS  Google Scholar 

  27. N. Kapur, B. Shan, J. Hyun, L. Wang, S. Yang, J.B. Nicholas, K. Cho, Mol Simul 37, 648 (2011)

    Article  CAS  Google Scholar 

  28. J.D. Lović, A.V. Tripković, S.L. Gojković, K.D. Popović, D.V. Tripković, P. Olszewski, A. Kowal, J Electroanal Chem 581, 294 (2005)

    Article  Google Scholar 

  29. Y. Liu, M.A. Lowe, F.J. DiSalvo, H.D. Abruna, J Phys Chem C 114, 14929 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education and Science, Republic of Serbia, contract no. H-172060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tripković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lović, J.D., Obradović, M.D., Tripković, D.V. et al. High Activity and Stability of Pt2Bi Catalyst in Formic Acid Oxidation. Electrocatalysis 3, 346–352 (2012). https://doi.org/10.1007/s12678-012-0099-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0099-9

Keywords

Navigation