Skip to main content

Advertisement

Log in

Research Progress of Nanomaterials for Prevention, Diagnosis, and Treatment of SARS-CoV-2

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The COVID-19 outbreak encouraged the global development of efficient prevention, diagnosis, and treatment while posing a major threat to the global economy and public health. It is discovered that due to the benefits of nanomaterials, including their ease of preparation, low cost, and ease of modification, there is a new possibility to create tactics against SARS-CoV-2. Studies on the economic viability, long-term safety, biocompatibility, and environmental effects of nanomaterials are still scarce, nevertheless. Currently, the primary methods for combating the SARS-CoV-2 virus are the creation of potent disinfectants, quick and precise diagnostic instruments, and nanovaccines. In order to give useful data reference for the development of nanomaterials against SARS-CoV-2 virus, this review first provides a brief introduction to the structure and infection mode of the SARS-CoV-2 virus. It next assesses the use of nanomaterials themselves. In order to establish a comprehensive cooperative battle against SARS-CoV-2 virus, it concludes by focusing on the application of nanomaterials for the prevention, diagnosis, and treatment of SARS-CoV-2 virus as well as their combined application with existing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Chan, J. F., Yuan, S., Kok, K. H., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223), 514–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paraskevis, D., Kostaki, E. G., Magiorkinis, G., et al. (2020). Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79, 104212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, J., Gong, X., Wang, Z., et al. (2020). Clinical features of familial clustering in patients infected with 2019 novel coronavirus in Wuhan, China. Virus Research, 286, 198043.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, P., Yang, X. L., Wang, X. G., et al. (2020). Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836), E6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Channappanavar, R., & Perlman, S. (2017). Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology, 39(5), 529–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Decaro, N., Mari, V., Elia, G., et al. (2010). Recombinant canine coronaviruses in dogs, Europe. Emerging Infectious Diseases, 16(1), 41–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chauhan, D. S., Prasad, R., Srivastava, R., et al. (2020). Comprehensive review on current interventions, diagnostics, and nanotechnology perspectives against SARS-CoV-2. Bioconjugate Chemistry, 31(9), 2021–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talebian, S., Wallace, G. G., Schroeder, A., et al. (2020). Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15(8), 618–621.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Weiss, C., Carriere, M., Fusco, L., et al. (2020). Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, 14(6), 6383–6406.

    Article  CAS  PubMed  Google Scholar 

  10. Kilic, T., Weissleder, R., & Lee, H. (2020). Molecular and immunological diagnostic tests of COVID-19: Current status and challenges. iScience, 23(8), 101406.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Orooji, Y., Sohrabi, H., Hemmat, N., et al. (2021). An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Letters, 13(1), 18.

    Article  PubMed  ADS  Google Scholar 

  12. Younis, S., Taj, A., Zia, R., et al. (2020). Nanosensors for the detection of viruses. In Nanosensors for Smart Cities (pp. 327–338).

    Chapter  Google Scholar 

  13. Shetti, N. P., Mishra, A., Bukkitgar, S. D., et al. (2021). Conventional and nanotechnology-based sensing methods for SARS coronavirus (2019-Ncov). ACS Applied Bio Materials, 4, 1178.

    Article  CAS  PubMed  Google Scholar 

  14. Zehbe, I., Hacker, G. W., Su, H., et al. (1997). Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-nanogold, and silver acetate autometallography: Detection of single-copy human papillomavirus. The American Journal of Pathology, 150(5), 1553–1561.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hasöksüz, M., Kilic, S., & Sarac, F. (2020). Coronaviruses and SARS-CoV-2. Turkish. Journal of Medical Sciences, 50(SI-1), 549–556.

    Google Scholar 

  16. Lu, S., Ye, Q., Singh, D., et al. (2021). The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nature Communications, 12(1), 502.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Coutard, B., Valle, C., de Lamballerie, X., et al. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research, 176, 104742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, S., Yang, M., Hong, Z., et al. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B, 10(7), 1228–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Astuti, I., & Ysrafil. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(4), 407–412.

    Article  Google Scholar 

  20. Budhraja, A., Pandey, S., Kannan, S., et al. (2021). The polybasic insert, the RBD of the SARS-CoV-2 spike protein, and the feline coronavirus - Evolved or yet to evolve. Biochemistry and Biophysics Reports, 25, 100907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 69.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scanlon, V. C., & Sanders, T. (2018). Essentials of anatomy and physiology (pp. 80–112). FA Davis.

    Google Scholar 

  23. Al-Halifa, S., Gauthier, L., Arpin, D., et al. (2019). Nanoparticle-based vaccines against respiratory viruses. Frontiers in Immunology, 10, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heinrich, M. A., Martina, B., & Prakash, J. (2020). Nanomedicine strategies to target coronavirus. Nano Today, 35, 100961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Izaguirre, G. (2019). The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses, 11(9), 837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuba, K., Imai, Y., Ohto-Nakanishi, T., et al. (2010). Trilogy of Ace2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology & Therapeutics, 128(1), 119–128.

    Article  CAS  Google Scholar 

  27. Zhang, Y., & Tang, L. V. (2020). Overview of targets and potential drugs of SARS-CoV-2 according to the viral replication. Journal of Proteome Research, 20(1), 49–59.

    Article  PubMed  Google Scholar 

  28. Malik, Y. A. (2020). Properties of coronavirus and SARS-CoV-2. The Malaysian Journal of Pathology, 42, 3–11.

    CAS  PubMed  Google Scholar 

  29. V'kovski, P., Kratzel, A., Steiner, S., et al. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. National Review, 19, 155–170.

    CAS  Google Scholar 

  30. Ueffing, M., Bayyoud, T., Schindler, M., et al. (2020). Basic principles of replication and immunology of SARS-CoV-2. Ophthalmologe, 117(7), 609–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo, Y. R., Cao, Q. D., Hong, Z. S., et al. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - An update on the status. Military Medical Research, 7(1), 1–10.

  32. Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abdelbasir, S. M., McCourt, K. M., Lee, C. M., et al. (2020). Waste-derived nanoparticles: Synthesis approaches, environmental applications, and sustainability considerations. Frontiers in Chemistry, 8, 782.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Kanwar, R., Rathee, J., Salunke, D. B., et al. (2019). Green nanotechnology-driven drug delivery assemblies. ACS Omega, 4, 8804–8815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ying, S., Guan, Z., Ofoegbu, P. C., et al. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology and Innovation, 26, 102336.

    Article  CAS  Google Scholar 

  36. Miao, Z., Shastri, Y., Grift, T. E., et al. (2012). Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling. Biofuels, Bioproducts and Biorefining, 6(3), 351–362.

    Article  CAS  Google Scholar 

  37. Zhang, S., Malik, S., Ali, N., et al. (2022). Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Top Curr Chem (Cham), 380(5), 44.

  38. Karlsson, H. L., Gustafsson, J., Cronholm, P., et al. (2009). Size-dependent toxicity of metal oxide particles--a comparison between nano- and micrometer size. Toxicology Letters, 188(2), 112–118.

    Article  CAS  PubMed  Google Scholar 

  39. Farnoud, A. M., & Nazemidashtarjandi, S. (2019). Emerging investigator series: Interactions of engineered nanomaterials with the cell plasma membrane; what have we learned from membrane models? Environmental Science: Nano, 6, 13–40.

    CAS  Google Scholar 

  40. Sravan Bollu, V., & Soren, G. (2016). Genotoxic and histopathological evaluation of zinc oxide nanorods in vivo in Swiss albino mice. Journal of Evolution of Medical and Dental Sciences, 5, 6186–6192.

    Article  Google Scholar 

  41. Donia, D. T., & Carbone, M. (2018). Fate of the Nanoparticles in environmental cycles. International journal of Environmental Science and Technology, 16, 583–600.

    Article  Google Scholar 

  42. Wamucho, A., Heffley, A., & Tsyusko, O. V. (2020). Epigenetic effects induced by silver nanoparticles in caenorhabditis elegans after multigenerational exposure. Science of the Total Environment, 725, 138523.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Starnes, D. L., Lichtenberg, S. S., Unrine, J. M., et al. (2016). Distinct transcriptomic responses of caenorhabditis elegans to pristine and sulfidized silver nanoparticles. Environmental Pollution, 213, 314–321.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Y., Gu, A. Z., Xie, S., et al. (2018). Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis. Environment International, 121, 1162–1171.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Subhan, M. A., & Subhan, T. (2022). Safety and global regulations for application of nanomaterials. In Nanomaterials Recycling; Micro and Nano Technologies (pp. 83–107). Elsevier.

    Chapter  Google Scholar 

  46. Food and Drug Administration; Office of the Commissioner; Office of Policy, L.I.A.; Office of Policy. (2014). Considering whether an FDA-regulated product involves the application of nanotechnology. Food and Drug Administration: Silver Spring.

    Google Scholar 

  47. Yang, Y., & Westerhoff, P. (2014). Presence in, and release of, nanomaterials from consumer products. Advances in Experimental Medicine and Biology, 811, 1–17.

    Article  PubMed  Google Scholar 

  48. Malakar, A., Kanel, S. R., Ray, C., et al. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: A review. Science of the Total Environment, 759, 143470.

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Donaldson, K., Tran, L., Jimenez, L. A., et al. (2005). Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Particle and Fibre Toxicology, 2, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Solanki, R., Shankar, A., Modi, U., et al. (2023). New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention. Materials Today Chemistry, 29, 101478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. El-Atab, N., Mishra, R. B., & Hussain, M. M. (2021). Toward nanotechnology-enabled face masks against SARS-CoV-2 and pandemic respiratory diseases. Nanotechnology, 33(6).

  52. Valenzuela-Fernández, A., Cabrera-Rodriguez, R., Ciuffreda, L., et al. (2022). Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Frontiers in Bioengineering and Biotechnology, 10, 1052436.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Moabelo, K. L., Martin, D. R., Fadaka, A. O., et al. (2021). Nanotechnology-based strategies for effective and rapid detection of SARS-CoV-2. Materials (Basel), 14(24), 7851.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Patra, S., Kerry, R. G., Maurya, G. K., et al. (2020). Emerging molecular prospective of SARS-CoV-2: Feasible nanotechnology based detection and inhibition. Frontiers in Microbiology, 11, 2098.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moitra, P., Alafeef, M., Dighe, K., et al. (2020). Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano, 14(6), 7617–7627.

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, X., Wang, X., Han, L., et al. (2020). Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosensors & Bioelectronics, 166, 112437.

    Article  CAS  Google Scholar 

  57. Qiu, G., Gai, Z., Tao, Y., et al. (2020). Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 14(5), 5268–5277.

    Article  CAS  PubMed  Google Scholar 

  58. Huang, X., Kon, E., Han, X., et al. (2022). Nanotechnology-based strategies against SARS-CoV-2 variants. Nature Nanotechnology, 17(10), 1027–1037.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Li, S., Liu, X., Liu, G., et al. (2023). Biomimetic nanotechnology for SARS-CoV-2 treatment. Viruses, 15(3), 596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang, Z., Zhang, X., Shu, Y., et al. (2021). Insights from nanotechnology in COVID-19 treatment. Nano Today, 36, 101019.

    Article  CAS  PubMed  Google Scholar 

  61. Albaz, A. A., Rafeeq, M. M., Sain, Z. M., et al. (2021). Nanotechnology-based approaches in the fight against SARS-CoV-2. AIMS Microbiology, 7(4), 368–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan, M. M., Goh, Y. W., Ahmad, N., et al. (2022). Understanding and combating COVID-19 using the biology and chemistry of SARS-CoV-2. Bioprocess and Biosystems Engineering, 45(11), 1753–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, L., Rong, Y., Pan, Q., et al. (2021). SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian Journal of Pharmaceutical Sciences, 16(2), 136–146.

    Article  PubMed  Google Scholar 

  64. Chauhan, G., Madou, M. J., Kalra, S., et al. (2020). Nanotechnology for COVID-19: Therapeutics and vaccine research. ACS Nano, 14(7), 7760–7782.

    Article  CAS  PubMed  Google Scholar 

  65. Milane, L., & Amiji, M. (2021). Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: Impact on translational nanomedicine. Drug Delivery and Translational Research, 11(4), 1309–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khurana, A., Allawadhi, P., Khurana, I., et al. (2021). Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today, 38, 101142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu, C., Lei, C., Hosseinpour, S., et al. (2022). Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. National Science Review, 9(10), nwac124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, Y. N., Hsueh, Y. H., Hsieh, C. T., et al. (2016). Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. International Journal of Environmental Research and Public Health, 13(4), 430.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ye, S., Shao, K., Li, Z., et al. (2015). Antiviral activity of graphene oxide: How sharp edged structure and charge matter. ACS Applied Materials & Interfaces, 7(38), 21571–21579.

    Article  CAS  Google Scholar 

  70. Hosseini, M., Behzadinasab, S., Benmamoun, Z., et al. (2021). The viability of SARS-CoV-2 on solid surfaces. Current Opinion in Colloid & Interface Science, 55, 101481.

    Article  CAS  Google Scholar 

  71. Doremalen, N. V., Bushmaker, T., Morris, D. H., et al. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine, 382(16), 1564–1567.

    Article  PubMed  Google Scholar 

  72. Nikaeen, G., Abbaszadeh, S., & Yousefinejad, S. (2020). Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine(Lond), 15(15), 1501–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones, G. W., Monopoli, M. P., Campagnolo, L., et al. (2020). No small matter: A perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomedicine (London, England), 15(24), 2411–2427.

    Article  CAS  PubMed  Google Scholar 

  74. Abo-Zeid, Y., Ismail, N. S. M., McLean, G. R., et al. (2020). A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. European Journal of Pharmaceutical Sciences, 153, 105465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chaudhary, V., Royal, A., Chavali, M., et al. (2021). Advancements in research and development to combat COVID-19 using nanotechnology. Nanotechnology for Environmental Engineering, 6(1), 1–15.

    Article  Google Scholar 

  76. Anand, U., Jakhmola, S., Indari, O., et al. (2021). Potential therapeutic targets and vaccine development for SARS-CoV-2/COVID-19 pandemic management: A review on the recent update. Front Immunol, 12, 658519.

  77. Nakamura, S., Sato, M., Sato, Y., et al. (2019). Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. International Journal of Molecular Sciences, 20, 3620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kalantar-Zadeh, K., Ward, S. A., Kalantar-Zadeh, K., et al. (2020). Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology roles. ACS Nano, 14(5), 5179–5182.

    Article  CAS  PubMed  Google Scholar 

  79. Sportelli, M. C., Izzi, M., Kukushkina, E. A., et al. (2020). Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials, 10, 802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Purwar, T., Dey, S., Al-Kayyali, O. Z. A., et al. (2022). Electrostatic spray disinfection using nano-engineered solution on frequently touched surfaces in indoor and outdoor environments. Int J Environ Res Public Health, 19(12), 7241.

  81. Makvandi, P., Wang, C., Zare, E. N., et al. (2020). Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Advanced Functional Materials, 30(12), 1910021.1–1910021.40.

    Google Scholar 

  82. Rajendran, S., Mukherjee, A., Nguyen, T. A., et al. (2020). Nanotoxicity: Prevention and antibacterial applications of nanomaterials (pp. 107–141). Elsevier.

    Google Scholar 

  83. Wang, Y., Jin, Y., Chen, W., et al. (2019). Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chemical Engineering Journal, 358, 74–90.

    Article  CAS  Google Scholar 

  84. Guelph researchers: Self-sterilizing nano-coating and no more coronavirus infected surfaces. In: Statnano. NBIC+. 2020.

  85. Nickels, L. (2020). Antiviral boost for nanoparticles. Metal Powder Report, 75, 330–333.

    Article  PubMed Central  Google Scholar 

  86. Mahapatra, P. S., Chatterjee, S., Tiwari, M. K., et al. (2020). Surface treatments to enhance the functionality of PPEs. Transactions of the Indian National Academy of Engineering, 5(2), 333–336.

    Article  PubMed Central  Google Scholar 

  87. (2021). Personalized reusable face masks with smart nano‐assisted destruction of pathogens for covid‐19: a visionary road. Chemistry – A European Journal.

  88. Hasanzadeh, A., Alamdaran, M., Ahmadi, S., et al. (2021). Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. Journal of Controlled Release, 336, 354–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mallakpour, S., Azadi, E., & Hussain, C. M. (2021). The latest strategies in the fight against the COVID-19 pandemic: The role of metal and metal oxide nanoparticles. New Journal of Chemistry, 45(14), 6167–6179.

    Article  CAS  Google Scholar 

  90. Ju, J. T. J., Boisvert, L. N., & Zuo, Y. Y. (2021). Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Advances in Colloid and Interface Science, 292, 102435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rasmi, Y., Saloua, K. S., Nemati, M., et al. (2021). Recent progress in nanotechnology for COVID-19 prevention, diagnostics and treatment. Nanomaterials, 11, 1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ngonghala, C. N., Iboi, E. A., & Gumel A. B. (2020). Could masks curtail the post-lockdown resurgence of COVID-19 in the US? Math Biosci, 329, 108452.

  93. Bueckert, M., Gupta, R., Gupta, A., et al. (2020). Infectivity of SARS-CoV-2 and other Coronaviruses on dry surfaces: Potential for Indirect Transmission. Materials (Basel), 13(22), 5211.

  94. Behzadinasab, S., Chin, A., Hosseini, M., et al. (2020). A surface coating that rapidly inactivates SARS-CoV-2. ACS Applied Materials & Interfaces, 12(31), 34723–34727.

    Article  CAS  Google Scholar 

  95. Matsuura, R., Lo, C. W., Wada, S., et al. (2021). SARS-CoV-2 Disinfection of Air and surface contamination by TiO2 photocatalyst-mediated damage to viral morphology, RNA, and protein. Viruses, 13(5), 942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Micochova, P., Chadha, A., Hesseloj, T., et al. (2021). Rapid inactivation of SARS-CoV-2 by titanium dioxide surface coating. Wellcome Open Research, 6, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Li, Y. H., Li, J., Liu, X. E., et al. (2005). Detection of the nucleocapsid protein of severe acute respiratory syndrome coronavirus in serum: Comparison with results of other viral markers. Journal of Virological Methods, 130(1-2), 45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yu-Cheng, S., Wei-En, H., & Lin, C. T. (2018). Review-field-effect transistor biosensing: Devices and clinical applications. ECS Journal of Solid State Science and Technology, 7(7), Q3196–Q3207.

    Article  Google Scholar 

  99. Seo, G., Lee, G., Kim, M. J., et al. (2020). Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 14(4), 5135–5142.

    Article  CAS  PubMed  Google Scholar 

  100. Mahari, S., Roberts, A., Shahdeo, D., et al. (2020). eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. Cold Spring Harbor Laboratory.

  101. Laderman, E. I., Whitworth, E., Dumaual, E., et al. (2008). Rapid, sensitive, and specific lateral-flow immunochromatographic point-of-care device for detection of herpes simplex virus type 2-specific immunoglobulin G antibodies in serum and whole blood. Clinical and Vaccine Immunology, 15(1), 159–163.

    Article  CAS  PubMed  Google Scholar 

  102. Nikbakht, H., Gill, P., Tabarraei, A., et al. (2014). Nanomolecular detection of human influenza virus type A using reverse transcription loop-mediated isothermal amplification assisted with rod-shaped gold nanoparticles. RSC Advances, 4(26), 13575–13580.

    Article  CAS  ADS  Google Scholar 

  103. Rabiee, N., Bagherzadeh, M., Ghasemi, A., et al. (2020). Point-of-use rapid detection of SARS-CoV-2: Nanotechnology-enabled solutions for the COVID-19 pandemic. International Journal of Molecular Sciences, 21(14), 5126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Somvanshi, S. B., Kharat, P. B., Saraf, T. S., et al. (2021). Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Materials Research Innovations, 25, 169–174.

    Article  ADS  Google Scholar 

  105. Algar, W. R., Susumu, K., Delehanty, J. B., et al. (2011). Semiconductor quantum dots in bioanalysis: Crossing the valley of death. Analytical Chemistry, 83(23), 8826–8837.

    Article  CAS  PubMed  Google Scholar 

  106. Ashiba, H., Sugiyama, Y., Wang, X., et al. (2017). Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosensors & Bioelectronics, 93, 260–266.

    Article  CAS  Google Scholar 

  107. Roh, C., & Jo, S. K. (2011). Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. Journal of Chemical Technology and Biotechnology, 86(12), 1475–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Georgakilas, V., Perman, J. A., Tucek, J., et al. (2015). Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 115(11), 4744–4822.

    Article  CAS  PubMed  Google Scholar 

  109. Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44, 362–381.

    Article  CAS  PubMed  Google Scholar 

  110. Yeh, Y. T., Tang, Y., Sebastian, A., et al. (2016). Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. Science Advances, 2(10), e1601026.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  111. Carvalho, A. P. A., & Conte-Junior, C. A. (2021). Recent advances on nanomaterials to COVID-19 management: A systematic review on antiviral/virucidal agents and mechanisms of SARS-CoV-2 inhibition/inactivation. Global Challenges, 5(5), 2000115.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Galdiero, S., Falanga, A., Cantisani, M., et al. (2014). Silver nanoparticles as novel antibacterial and antiviral agents. In Handbook of Nanobiomedical Research: Fundamentals, Applications and Recent Developments: Vol. 1. Materials for Nanomedicine (pp. 565–594). World Scientific.

    Google Scholar 

  113. Cagno, V., Andreozzi, P., D’Alicarnasso, M., et al. (2018). Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nature Materials, 17(2), 195–203.

    Article  CAS  PubMed  ADS  Google Scholar 

  114. Kim, J., Yeom, M., Lee, T., et al. (2020). Porous gold nanoparticles for attenuating infectivity of influenza A virus. Journal of Nanobiotechnology, 18(1), 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. El-Gaffary, M., Bashandy, M. M., Ahmed, A. R., et al. (2019). Self-assembled gold nanoparticles for in-vitro inhibition of bovine viral diarrhea virus as surrogate model for HCV. Materials Research Express, 6(7), 075075.

    Article  CAS  ADS  Google Scholar 

  116. Mehranfar, A., & Izadyar, M. (2020). Theoretical Design of functionalized gold nanoparticles as antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Journal of Physical Chemistry Letters, 11(24), 10284–10289.

    Article  CAS  PubMed  Google Scholar 

  117. Mahajan, S. D., Aalinkeel, R., Law, W. C., et al. (2012). Anti-HIV-1 nanotherapeutics: Promises and challenges for the future. International Journal of Nanomedicine, 7, 5301–5314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yazdi, M. H., Mahdavi, M., Faghfuri, E., et al. (2015). Th1 immune response induction by biogenic selenium nanoparticles in mice with breast cancer: Preliminary vaccine model. Iranian Journal of Biotechnology, 13(2), 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Christiansen, D., Earnest-Silveira, L., Grubor-Bauk, B., et al. (2019). Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Scientific Reports, 9(1), 9251.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Hodgins, B., Pillet, S., Landry, N., et al. (2019). A plant-derived VLP influenza vaccine elicits a balanced immune response even in very old mice with co-morbidities. PLoS One, 14(1), e0210009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mohsen, M. O., Speiser, D. E., Knuth, A., et al. (2020). Virus-like particles for vaccination against cancer. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 12(1), e1579.

    Article  CAS  PubMed  Google Scholar 

  122. Quan, F. S., Basak, S., Chu, K. B., et al. (2020). Progress in the development of virus-like particle vaccines against respiratory viruses. Expert Review of Vaccines, 19(1), 11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu, R., Shi, M., Li, J., et al. (2020). Construction of SARS-CoV-2 virus-like particles by mammalian expression system. Frontiers in Bioengineering and Biotechnology, 8, 862.

    Article  PubMed  PubMed Central  Google Scholar 

  124. LaTourette, P. C., II, Awasthi, S., Desmond, A., et al. (2020). Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine. Vaccine, 38(47), 7409–7413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mucker, E. M., Karmali, P. P., Vega, J., et al. (2020). Lipid nanoparticle formulation increases efficiency of DNA-vectored vaccines/immunoprophylaxis in animals including transchromosomic bovines. Scientific Reports, 10(1), 8764.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  126. Miao, L., Li, L., Huang, Y., et al. (2019). Delivery of Mrna vaccines with heterocyclic lipids increases anti-tumor efficacy by sting-mediated immune cell activation. Nature Biotechnology, 37(10), 1174–1185.

    Article  CAS  PubMed  Google Scholar 

  127. Liu, L., Liu, Z., Chen, H., et al. (2020). Subunit nanovaccine with potent cellular and mucosal immunity for COVID-19. ACS Applied Bio Materials, 3(9), 5633–5638.

    Article  CAS  PubMed  Google Scholar 

  128. Pardi, N., Hogan, M. J., Porter, F. W., et al. (2018). mRNA vaccines - a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Smith, T. R., Patel, A., Ramos, S., et al. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications, 11(1), 1–13.

    Article  Google Scholar 

  130. Zhang, N. N., Li, X. F., Deng, Y. Q., et al. (2020). A thermostable mRNA vaccine against COVID-19. Cell, 182(5), 1271–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tiram, G., Scomparin, A., Ofek, P., et al. (2014). Interfering cancer with polymeric siRNA nanomedicines. Journal of Biomedical Nanotechnology, 10(1), 50.

    Article  CAS  PubMed  Google Scholar 

  132. Cojocaru, F. D., Doru, B., Gardikiotis, I., et al. (2020). Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics, 12(2), 171.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Amir, G., Navid, R., Sepideh, A., et al. (2018). Optical assays based on colloidal inorganic nanoparticles. Analyst, 143, 10.1039.

    Google Scholar 

  134. Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10(9), 1203.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhong, J., Xia, Y., Hua, L., et al. (2019). Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model. Artificial Cells, 47(1), 3485–3491.

    CAS  Google Scholar 

  136. Ahmadi, S., Rabiee, N., Bagherzadeh, M., et al. (2020). Stimulus-responsive sequential release systems for drug and gene delivery. Nano Today, 34, 100914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shakiba, S., Astete, C. E., Paudel, S., et al. (2020). Emerging investigator series: Polymeric nanocarriers for agricultural applications: Synthesis, characterization, and environmental and biological interactions. Environmental Science: Nano, 7(1), 37–67.

    CAS  Google Scholar 

  138. LaBauve, A. E., Rinker, T. E., Noureddine, A., et al. (2018). Lipid-coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Scientific Reports, 8(1), 13990.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (no. 81760750); Natural Science Foundation of Hebei Province (no. H2020208018, C2020208023); the Graduate Student Innovation Ability Training Project of Hebei University of Science and Technology (XJCXZZSS202307); Doctoral research fund project of Hebei University of Science and Technology (no. QD2023004).

Author information

Authors and Affiliations

Authors

Contributions

Yachan Feng draft the article, conduct literature retrieval, and provide the overall structure of the article. Haojie Zhang, Jiangtao Shao, Xiaolei Zhou, Yu Fu, and Chao Du modified the article and added some content. Yingze Wang and Xueling Guo revised the arrangement of the article to help improve the accuracy of the language. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Xueling Guo or Yingze Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Informed Consent

All authors are aware of and agree to any action taken regarding the article.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research Involving Humans and Animals Statement

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, H., Shao, J. et al. Research Progress of Nanomaterials for Prevention, Diagnosis, and Treatment of SARS-CoV-2. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01310-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01310-6

Keywords

Navigation