Skip to main content

Advertisement

Log in

Temozolomide and Doxorubicin Combined Treatment by Graphene Oxide-Cyclodextrin Nanocarriers for Synergistic Inhibition of Glioblastoma Cells

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Temozolomide (TMZ) is the first-line chemotherapy for glioblastoma, a deadly brain cancer. Doxorubicin (DOX) is another cancer chemotherapeutic drug, but low blood–brain barrier permeability limits its use for glioblastoma. This limitation may be overcome using nanocarriers as new delivery strategies. This study aimed to load DOX and TMZ on cyclodextrin-graphene oxide nanocarrier and evaluate their combined cytotoxic effect against glioblastoma. The α-, β-, and γ-cyclodextrins (CDs) were separately conjugated to graphene oxide (GO) sheets to synthesize nanocarriers for TMZ and DOX. The entrapment and drug loading efficiency were determined by UV–visible spectrophotometry analysis at 480 nm for TMZ and 330 nm for DOX. The MTT assay and annexin V/PI staining were used to assess cytotoxicity of TMZ, DOX, and their nanocarriers on viability and apoptosis of U87 cells. Drug-content evaluation showed that the loading efficiency of α-, β-, and γ-CD-GO-TMZ was 29%, 31%, and 21%, respectively. The loading level for DOX was found to be 18–25%. The nanocarriers loaded with TMZ and DOX showed more cytotoxic effects against glioblastoma cells compared to the drugs used alone. Among different kinds of α-, β-, and γ-CD-GO nanocarriers, the β-CD-GO-TMZ and α-CD-GO-DOX showed better cytotoxic activity. Combination of γ-CD-GO-TMZ and γ-CD-GO-DOX exhibited a synergistic effect. Also, the drug-loaded nanocarriers were able to induce apoptosis and necrosis in glioblastoma cells. In conclusion, our findings demonstrated that formulation of TMZ and DOX using CD-GO nanocarriers may be a promising candidate for glioblastoma management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References 

  1. Sawosz, E., Jaworski, S., Kutwin, M., Vadalasetty, K. P., Grodzik, M., Wierzbicki, M., Kurantowicz, N., Strojny, B., Hotowy, A., & Lipińska, L. (2015). Graphene functionalized with arginine decreases the development of glioblastoma multiforme tumor in a gene-dependent manner. International journal of molecular sciences, 16(10), 25214–25233.

    Article  Google Scholar 

  2. Walker, C., Baborie, A., Crooks, D., Wilkins, S., & Jenkinson, M. (2011). Biology, genetics and imaging of glial cell tumours. The British journal of radiology, 84(special_issue_2), 90–106.

    Article  Google Scholar 

  3. Noch, E. K., Ramakrishna, R., & Magge, R. (2018). Challenges in the treatment of glioblastoma: Multisystem mechanisms of therapeutic resistance. World neurosurgery, 116, 505–517.

    Article  Google Scholar 

  4. Lee, S. Y. (2016). Temozolomide resistance in glioblastoma multiforme. Genes & diseases, 3(3), 198–210.

    Article  Google Scholar 

  5. Zhao, P.-H., Wei, Z., Wang, L.-H., Pang, C., Zhang, H.-R., Wang, J., & Wang, Y.-L. (2021). Delivery of temozolomide using PEGylated graphene oxide as a nanocarrier. Materials Express, 11(2), 189–195.

    Google Scholar 

  6. Trinh, V. A., Patel, S. P., & Hwu, W. J. (2009). The safety of temozolomide in the treatment of malignancies. Expert opinion on drug safety, 8(4), 493–499.

  7. Xu, Y., Shen, M., Li, Y., Sun, Y., Teng, Y., Wang, Y., & Duan, Y. (2016). The synergic antitumor effects of paclitaxel and temozolomide co-loaded in mPEG-PLGA nanoparticles on glioblastoma cells. Oncotarget, 7(15), 20890.

    Article  Google Scholar 

  8. Villodre, E. S., Kipper, F. C., Silva, A. O., Lenz, G., & Lopez, P. L. C. D. (2018). Low dose of doxorubicin potentiates the effect of temozolomide in glioblastoma cells. Molecular neurobiology, 55(5), 4185–4194.

    Google Scholar 

  9. Du, K., Xia, Q., Heng, H., & Feng, F. (2020). Temozolomide–doxorubicin conjugate as a double intercalating agent and delivery by apoferritin for glioblastoma chemotherapy. ACS applied materials & interfaces, 12(31), 34599–34609.

    Article  Google Scholar 

  10. Lüpertz, R., Wätjen, W., Kahl, R., & Chovolou, Y. (2010). Dose-and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology, 271(3), 115–121.

    Article  Google Scholar 

  11. Chowdhury, N., Chaudhry, S., Hall, N., Olverson, G., Zhang, Q.-J., Mandal, T., Dash, S., & Kundu, A. (2020). Targeted delivery of doxorubicin liposomes for Her-2+ breast cancer treatment. An Official Journal of the American Association of Pharmaceutical Scientists, 21, 1–12.

    Google Scholar 

  12. Aziz, A., Sefidbakht, Y., Rezaei, S., Kouchakzadeh, H., & Uskoković, V. (2022). Doxorubicin-loaded, pH-sensitive albumin nanoparticles for lung cancer cell targeting. Journal of Pharmaceutical Sciences, 111(4), 1187–1196.

    Article  Google Scholar 

  13. Zhang, Z., Yu, X., Wang, Z., Wu, P., & Huang, J. (2015). Anthracyclines potentiate anti-tumor immunity: A new opportunity for chemoimmunotherapy. Cancer letters, 369(2), 331–335.

    Article  Google Scholar 

  14. Patel, A. G., & Kaufmann, S. H. (2012). Cancer: How does doxorubicin work? eLife, 1, e00387.

    Article  Google Scholar 

  15. Wang, B., Guo, H., Xu, H., Chen, Y., Zhao, G., & Yu, H. (2022). The role of graphene oxide nanocarriers in treating gliomas. Frontiers in oncology, 12, 176.

    Google Scholar 

  16. Einafshar, E., Asl, A. H., Nia, A. H., Mohammadi, M., Malekzadeh, A., & Ramezani, M. (2018). New cyclodextrin-based nanocarriers for drug delivery and phototherapy using an irinotecan metabolite. Carbohydrate polymers, 194, 103–110.

    Article  Google Scholar 

  17. Taheriazam, A., Abad, G. G. Y., Hajimazdarany, S., Imani, M. H., Ziaolhagh, S., Zandieh, M. A., Bayanzadeh, S. D., Mirzaei, S., Hamblin, M. R., & Entezari, M. (2023). Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. Journal of Controlled Release, 354, 503–522.

    Article  Google Scholar 

  18. Liu, J., Cui, L., & Losic, D. (2013). Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta biomaterialia, 9(12), 9243–9257.

    Article  Google Scholar 

  19. Gurunathan, S., Kang, M.-H., Qasim, M., & Kim, J.-H. (2018). Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. International journal of molecular sciences, 19(10), 3264.

    Article  Google Scholar 

  20. Guo, X., & Mei, N. (2014). Assessment of the toxic potential of graphene family nanomaterials. Journal of food and drug analysis, 22(1), 105–115.

    Article  Google Scholar 

  21. Jaworski, S., Sawosz, E., Kutwin, M., Wierzbicki, M., Hinzmann, M., Grodzik, M., Winnicka, A., Lipińska, L., Włodyga, K., & Chwalibog, A. (2015). In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. International journal of nanomedicine, 10, 1585.

    Google Scholar 

  22. Gürten, B., Yenigül, E., Sezer, A. D., & Malta, S. (2018). Complexation and enhancement of temozolomide solubility with cyclodextrins. Brazilian Journal of Pharmaceutical Sciences, 54.

  23. Einafshar, E., HaghighiAsl, A., Ramezani, M., Hashemnia, A., & Malekzadeh, A. (2019). Synthesis and characterization of multifunctional graphene oxide with gamma-cyclodextrin and SPION as new nanocarriers for drug delivery. Applied Chemistry, 14(51), 35–50.

    Google Scholar 

  24. Einafshar, E., Khodadadipoor, Z., Nejabat, M., & Ramezani, M. (2021). Synthesis, Characterization and application of α, β, and γ cyclodextrin-conjugated graphene oxide for removing cadmium ions from aqueous media. Journal of Polymers and the Environment, 29, 3161–3173.

    Article  Google Scholar 

  25. Einafshar, E., HaghighiAsl, A., & Malekzadeh, A. (2018). Synthesis of new biodegradable nanocarriers for SN38 delivery and synergistic phototherapy. Nanomed J, 5(4), 210–216.

    Google Scholar 

  26. Najafi, Z., Einafshar, E., Mirzavi, F., Amiri, H., Jalili-Nik, M., & Soukhtanloo, M. (2023). Protective effect of hesperidin-loaded selenium nanoparticles stabilized by chitosan on glutamate-induced toxicity in PC12 cells. Journal of Nanoparticle Research, 25(9), 178.

    Article  Google Scholar 

  27. D’Souza, S. (2014). A review of in vitro drug release test methods for nano-sized dosage forms. Advances in Pharmaceutics, 2014, 1–12.

    Google Scholar 

  28. Kim, Y., Park, E. J., Kim, T. W., & Na, D. H. (2021). Recent progress in drug release testing methods of biopolymeric particulate system. Pharmaceutics, 13(8), 1313.

    Article  Google Scholar 

  29. Wang, B., Guo, H., Xu, H., Chen, Y., Zhao, G., & Yu, H. (2022). The role of graphene oxide nanocarriers in treating gliomas. Frontiers in Oncology, 12, 736177.

    Article  Google Scholar 

  30. Bansal, R., Singh, R., & Kaur, K. (2021). Quantitative analysis of doxorubicin hydrochloride and arterolane maleate by mid IR spectroscopy using transmission and reflectance modes. BMC chemistry, 15(1), 1–11.

    Article  Google Scholar 

  31. Palai, P. K., Mondal, A., Chakraborti, C. K., Banerjee, I., & Pal, K. (2019). Green synthesized amino-PEGylated silver decorated graphene nanoplatform as a tumor-targeted controlled drug delivery system. SN Applied Sciences, 1(3), 1–18.

    Article  Google Scholar 

  32. Martinho, O., Vilaça, N., Castro, P. J., Amorim, R., Fonseca, A. M., Baltazar, F., Reis, R. M., & Neves, I. C. (2015). In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Advances, 5(36), 28219–28227.

    Article  Google Scholar 

  33. Almoshari, Y., Iqbal, H., Razzaq, A., Ali Ahmad, K., Khan, M. K., Saeed Alqahtani, S., Hadi Sultan, M., & Ali Khan, B. (2022). Development of nanocubosomes co-loaded with dual anticancer agents curcumin and temozolomide for effective Colon cancer therapy. Drug Delivery, 29(1), 2633–2643.

    Article  Google Scholar 

  34. Wen, P., Gong, P., Mi, Y., Wang, J., & Yang, S. (2014). Scalable fabrication of high quality graphene by exfoliation of edge sulfonated graphite for supercapacitor application. RSC advances, 4(68), 35914–35918.

    Article  Google Scholar 

  35. Zhang, P., Chen, D., Li, L., & Sun, K. (2022). Charge reversal nano-systems for tumor therapy. Journal of Nanobiotechnology, 20, 1–27.

    Google Scholar 

  36. Song, M.-M., Xu, H.-L., Liang, J.-X., Xiang, H.-H., Liu, R., & Shen, Y.-X. (2017). Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery. Materials Science and Engineering: C, 77, 904–911.

    Article  Google Scholar 

  37. Baloi, C., Oprita, A., Semenescu, L. E., Tache, D. E., Popescu, O. S., Staicu, G. A., & Dricu, A. (2022). Combined effects of doxorubicin and temozolomide in cultured glioblastoma cells. Current Health Sciences Journal, 48(3), 263.

    Google Scholar 

  38. Horescu, C., Elena Cioc, C., Tuta, C., Sevastre, A.-S., Tache, D. E., Alexandru, O., Artene, S.-A., Danoiu, S., Dricu, A., & StefanaOana, P. (2020). The effect of temozolomide in combination with doxorubicin in glioblastoma cells in vitro. Journal of Immunoassay and Immunochemistry, 41(6), 1033–1043.

    Article  Google Scholar 

Download references

Funding

This study was supported by a research grant from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Elham Einafshar conducted the experiments, analyzed the data, and wrote the manuscript; , Maryam Hashemi, Aida Gholoobi and Leila Mobasheri participated in the experiments and data analysis; Ahmad Ghorbani designed and supervised the research and reviewed the manuscript. All authors read and agreed with the published version of the manuscript.

Corresponding author

Correspondence to Ahmad Ghorbani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Informed Consent

Not applicable.

Conflict of Interest 

None.

Research Involving Humans and Animals Statement

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Einafshar, E., Hashemi, M., Gholoobi, A. et al. Temozolomide and Doxorubicin Combined Treatment by Graphene Oxide-Cyclodextrin Nanocarriers for Synergistic Inhibition of Glioblastoma Cells. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01299-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01299-y

Keywords

Navigation