Skip to main content
Log in

Thermophoresis and Brownian Motion Influenced Bioconvective Cylindrical Shaped Ag–CuO/H2O Ellis Hybrid Nanofluid Flow Along a Radiative Stretched Tube with Inclined Magnetic Field

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This investigation aims to delineate bioconvection in cylindrical-shaped Ag-CuO/H2O Ellis hybrid nanofluid containing gyrotactic microorganisms around a steady stretched cylindrical tube. Considering Brownian and thermophoretic diffusions, along with effects from an inclined magnetic field and slip, we derive a nonlinear system using boundary layer equations. Employing MATLAB’s bvp4c function for numerical solutions, validated against established studies, we observe strong agreement. Graphical and tabular analyses demonstrate the impact of various parameters on velocity, temperature, concentration, gyrotactic microorganism profiles, skin friction coefficient, local Nusselt and Sherwood numbers, and gyrotactic microorganism coefficient, offering valuable interpretations. Observations reveal that the Ellis fluid parameter heightens velocity but reduces temperature, concentration, and gyrotactic microorganism profiles. Conversely, thermophoresis and Brownian motion enhance heat and mass transfer rates, while slip exhibits an opposite trend. Peclet number and bioconvective constants exhibit intriguing but contrary trends with gyrotactic microorganism profiles, yielding notable insights. A comparison between Ellis hybrid nanofluid and Ellis nanofluid reveals approximate variations in skin friction coefficients (up by 46.5%) and Nusselt numbers (down by 4%), suggesting improved aerodynamics and enhanced biomedical heat control for industrial optimization. Moreover, the reduction in Sherwood numbers (down by 56%) suggests potential applications in tailored environmental remediation and the optimisation of substance diffusion in pharmaceutical and biomedical therapeutics. This comprehensive analysis delves into intricate fluid dynamics, offering empirical insights applicable across engineering, biomedical sciences, and environmental remediation domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

\({r}^{\prime},z^{\prime}\)  :

Velocity component along \(w^{\prime}\) and \(r^{\prime}\) respectively (m s1)

\(T^{\prime}\)  :

Fluid temperature (K)

\(C^{\prime}\)  :

Fluid concentration (kg m3)

\({T}_{w}^{\prime}\)  :

Wall temperature (K)

\({C}_{w}^{\prime}\)  :

Wall concentration (kg m3)

\(R^{\prime}\)  :

The radius of the cylinder (m)

\({T}_{\infty }^{\prime}\)  :

Ambient temperature (K)

\({C}_{\infty }^{\prime}\)  :

Ambient concentration (kg m3)

\(Pr\) :

Prandtl number

\({D}_{T}^{\prime}\)  :

Thermophoresis diffusion coefficient (m2 s1)

\(K\) :

Thermal conductivity (W m1 K1)

\(Sc\) :

Schmidt number

\({C}_{{F}_{g}}\) :

Skin friction coefficient

\(Th\) :

Thermophoresis parameter

\({D}_{B}^{\prime}\)  :

Brownian diffusion coefficient (m2 s1)

\(M\) :

Magnetic parameter

\(N{u}_{x}\) :

Nusselt number

\(S\) :

Slip parameter

\(Bm\) :

Brownian motion parameter

\(S{h}_{x}\) :

Sherwood number

\({F}_{g}\) :

Non-dimensional stream function

\(R{e}_{x}\) :

Local Reynolds number

\({k}^{*}\) :

Mean absorption coefficient

\({Q}_{n}\) :

Radiative heat flux (W m2)

\({C}_{p}\) :

Specific heat capacity (J kg1 K1)

\({B}_{0}\) :

Constant magnetic flux

\(Nd\) :

Radiation parameter

\(Lb\) :

Bio-convective Lewis number

\({D^{\prime}}_{m}\)  :

Microorganism diffusion coefficient (m2 s1)

\(Pe\) :

Bio-convective Peclet number

\({A}_{1}\) :

First Rivlin-Ericksen tensor

\({W}_{c}\) :

Maximum cell swimming speed

\({U}_{w}^{\prime}\)  :

Stretching velocity along \(z^{\prime}\) direction

\(N{n}_{x}\) :

Microorganism coefficient

\({F}_{\chi }\) :

Non-dimensional temperature

\({\sigma }^{*}\) :

Stefan-Boltzmann coefficient

\({\beta }_{e}\) :

Ellis fluid parameter

\({\alpha }_{1}\) :

Thermal diffusivity (m2 s1)

\(\gamma\) :

Curvature parameter

\(\zeta\) :

Similarity transformation variable

\({F}_{\phi }\) :

Non-dimensional concentration

\(\mu\) :

Dynamic viscosity (mPa)

\({\tau }_{1}\) :

Ratio of heat transfer capacity of the particles of the fluid

\(\rho\) :

Density (kg m3)

\({\pi }_{s}\) :

Second order invariant of the stress tensor

\({F}_{\psi }\) :

Non-dimensional microorganism

\(\nu\) :

Kinematic viscosity (m2 s1)

\({\tau }_{0},\alpha\) :

Material constants

\(\xi\) :

Inclination of magnetic field

\(\tau\) :

Extra stress tensor

\(\sigma\) :

Electrical conductivity (S m1)

\(\delta\) :

Bio-convective constant

\(Ag\) :

Silver

\(CuO\) :

Cupric oxide

\(f\) :

Base fluid (water)

\(hnf\) :

Hybrid nanofluid

\(w\) :

Cylinder surface

\(\infty\) :

Far field

\({\text{MHD}}\) :

Magnetohydrodynamics

\({\text{G}}.{\text{M}}.\) :

Gyrotactic microorganisms

References

  1. Cho, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab (ANL), Argonne, IL (United States), 231, 99–105.

  2. Ashorynejad, H. R., Sheikholeslami, M., Pop, I., & Ganji, D. D. (2013). Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat and Mass Transfer, 49, 427–436. https://doi.org/10.1007/s00231-012-1087-6

    Article  Google Scholar 

  3. Sheikholeslami, M. (2015). Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 1623–1633. https://doi.org/10.1007/s40430-014-0242-z

    Article  Google Scholar 

  4. Sheikholeslami, M., Ellahi, R., Hassan, M., & Soleimani, S. (2014). A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. International Journal of Numerical Methods for Heat & Fluid Flow, 24(8), 1906–1927. https://doi.org/10.1108/HFF-07-2013-0225

    Article  Google Scholar 

  5. Abbas, N., Nadeem, S., Saleem, A., Malik, M. Y., Issakhov, A., & Alharbi, F. M. (2021). Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chinese Journal of Physics, 69, 109–117. https://doi.org/10.1016/j.cjph.2020.11.019

    Article  MathSciNet  Google Scholar 

  6. Nadeem, S., Abbas, N., & Khan, A. U. (2018). Characteristics of three-dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Results in Physics, 8, 829–835. https://doi.org/10.1016/j.rinp.2018.01.024

    Article  Google Scholar 

  7. Alharbi, K. A. M., Ahmed, A. E. S., Ould Sidi, M., Ahammad, N. A., Mohamed, A., El-Shorbagy, M. A., Bilal, M., & Marzouki, R. (2022). Computational valuation of Darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects. Micromachines, 13(4), 588. https://doi.org/10.3390/mi13040588

    Article  Google Scholar 

  8. Zainal, N. A., Nazar, R., Naganthran, K., & Pop, I. (2022). Unsteady MHD hybrid nanofluid flow towards a horizontal cylinder. International Communications in Heat and Mass Transfer, 134, 106020. https://doi.org/10.1016/j.icheatmasstransfer.2022.106020

    Article  Google Scholar 

  9. Kumbhakar, B., Nandi, S., & Chamkha, A. J. (2022). Unsteady hybrid nanofluid flow over a convectively heated cylinder with inclined magnetic field and viscous dissipation: A multiple regression analysis. Chinese Journal of Physics, 79, 38–56. https://doi.org/10.1016/j.cjph.2022.07.003

    Article  MathSciNet  Google Scholar 

  10. Abbas, W., Bani-Fwaz, M. Z., & Asogwa, K. K. (2023). Thermal efficiency of radiated tetra-hybrid nanofluid [(Al2O3-CuO-TiO2-Ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection. Science Progress, 106(1), 00368504221149797. https://doi.org/10.1177/00368504221149797

  11. Zhang, K., Shah, N. A., Alshehri, M., Alkarni, S., Wakif, A., & Eldin, S. M. (2023). Water thermal enhancement in a porous medium via a suspension of hybrid nanoparticles: MHD mixed convective Falkner’s-Skan flow case study. Case Studies in Thermal Engineering, 47, 103062. https://doi.org/10.1016/j.csite.2023.103062

    Article  Google Scholar 

  12. Rasool, G., Shafiq, A., Wang, X., Chamkha, A. J., & Wakif, A. (2023). Numerical treatment of MHD Al2O3–Cu/engine oil-based nanofluid flow in a Darcy–Forchheimer medium: Application of radiative heat and mass transfer laws. International Journal of Modern Physics B, e2450129 https://doi.org/10.1142/S0217979224501297

  13. Elboughdiri, N., Ghernaout, D., Muhammad, T., Alshehri, A., Sadat, R., Ali, M. R., & Wakif, A. (2023). Towards a novel EMHD dissipative stagnation point flow model for radiating copper-based ethylene glycol nanofluids: An unsteady two-dimensional homogeneous second-grade flow case study. Case Studies in Thermal Engineering, 45, 102914. https://doi.org/10.1016/j.csite.2023.102914

    Article  Google Scholar 

  14. Rasool, G., Wakif, A., Wang, X., Shafiq, A., & Chamkha, A. J. (2023). Numerical passive control of alumina nanoparticles in purely aquatic medium featuring EMHD driven non-Darcian nanofluid flow over convective Riga surface. Alexandria Engineering Journal, 68, 747–762. https://doi.org/10.1016/j.aej.2022.12.032

    Article  Google Scholar 

  15. Wakif, A., Abderrahmane, A., Guedri, K., Bouallegue, B., Kaewthongrach, R., Kaewmesri, P., & Jirawattanapanit, A. (2022). Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature analysis. Frontiers of Physics, 10, 988275. https://doi.org/10.3389/fphy.2022.988275

    Article  Google Scholar 

  16. Mabood, F., Yusuf, T. A., & Khan, W. A. (2021). Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation. Journal of Thermal Analysis and Calorimetry, 143(2), 973–984. https://doi.org/10.1007/s10973-020-09720-w

    Article  Google Scholar 

  17. Yusuf, T. A., Mabood, F., Khan, W. A., & Gbadeyan, J. A. (2020). Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model. Alexandria Engineering Journal, 59(6), 5247–5261. https://doi.org/10.1016/j.aej.2020.09.053

    Article  Google Scholar 

  18. Salawu, S., Ogunseye, H., Yusuf, T., Lebelo, R., & Mustapha, R. (2023). Entropy generation in a magnetohydrodynamic hybrid nanofluid flow over a nonlinear permeable surface with velocity slip effect. WSEAS Trans Fluid Mechanics, 8, 34–48. https://doi.org/10.37394/232013.2023.18.4

    Article  Google Scholar 

  19. Mabood, F., Yusuf, T. A., & Bognár, G. (2020). Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation. Science and Reports, 10(1), 19163. https://doi.org/10.1038/s41598-020-76133-y

    Article  Google Scholar 

  20. Maurya, S., Dayal, R., & Kumar, M. (2023). Mixed convection of a non-Newtonian fluid in a square enclosure with rotating and oscillating cylinder. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.642

    Article  Google Scholar 

  21. Chhabra, R. P., Soares, A. A., & Ferreira, J. M. (2004). Steady non–Newtonian flow past a circular cylinder: A numerical study. Acta Mechanica, 172(1–2), 1–16. https://doi.org/10.1007/s00707-004-0154-6

    Article  Google Scholar 

  22. Prasad, V. R., Gaffar, S. A., Reddy, E. K., & Bég, O. A. (2014). Flow and heat transfer of Jeffreys non-Newtonian fluid from horizontal circular cylinder. Journal of Thermophysics and Heat Transfer, 28(4), 764–770. https://doi.org/10.2514/1.T4253

    Article  Google Scholar 

  23. Khan, M., Ahmed, A., Irfan, M., & Ahmed, J. (2021). Analysis of Cattaneo-Christov theory for unsteady flow of Maxwell fluid over stretching cylinder. Journal of Thermal Analysis and Calorimetry, 144, 145–154. https://doi.org/10.1007/s10973-020-09343-1

    Article  Google Scholar 

  24. Matsuhisa, S., & Bird, R. B. (1965). Analytical and numerical solutions for laminar flow of the non-Newtonian ellis fluid. AIChE Journal, 11(4), 588–595. https://doi.org/10.1002/aic.690110407

    Article  Google Scholar 

  25. Awan, A. U., Ali, B., Shah, S. A. A., Oreijah, M., Guedri, K., & Eldin, S. M. (2023). Numerical analysis of heat transfer in Ellis hybrid nanofluid flow subject to a stretching cylinder. Case Studies in Thermal Engineering, 49, 103222. https://doi.org/10.1016/j.csite.2023.103222

    Article  Google Scholar 

  26. Ahmed, S. E., Arafa, A. A., & Hussein, S. A. (2022). MHD Ellis nanofluids flow around rotating cone in the presence of motile oxytactic microorganisms. International Communications in Heat and Mass Transfer, 134, 106056. https://doi.org/10.1016/j.icheatmasstransfer.2022.106056

    Article  Google Scholar 

  27. Rooman, M., Jan, M. A., Shah, Z., & Alzahrani, M. R. (2022). Entropy generation and nonlinear thermal radiation analysis on axisymmetric MHD Ellis nanofluid over a horizontally permeable stretching cylinder. Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.2020934

    Article  Google Scholar 

  28. Elboughdiri, N., Reddy, C. S., Alshehri, A., Eldin, S. M., Muhammad, T., & Wakif, A. (2023). A passive control approach for simulating thermally enhanced Jeffery nanofluid flows nearby a sucked impermeable surface subjected to buoyancy and Lorentz forces. Case Studies in Thermal Engineering, 47, 103106. https://doi.org/10.1016/j.csite.2023.103106

  29. Sharma, J., Ahammad, N. A., Wakif, A., Shah, N. A., Chung, J. D., & Weera, W. (2023). Solutal effects on thermal sensitivity of casson nanofluids with comparative investigations on Newtonian (water) and non-Newtonian (blood) base liquids. Alexandria Engineering Journal, 71, 387–400. https://doi.org/10.1016/j.aej.2023.03.062

    Article  Google Scholar 

  30. Ogunniyi, P. O., Gbadeyan, A. J., Agarana, M. C., & Yusuf, T. A. (2022). Nonlinear thermal radiation on MHD tangential hyperbolic hybrid nanofluid over a stretching wedge with convective boundary condition. Heat Transfer, 51(6), 5417–5440. https://doi.org/10.1002/htj.22553

    Article  Google Scholar 

  31. Malvandi, A., Heysiattalab, S., & Ganji, D. D. (2016). Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. Journal of Molecular Liquids, 216, 503–509. https://doi.org/10.1016/j.molliq.2016.01.030

    Article  Google Scholar 

  32. Matin, M. H., Mahian, O., & Wongwises, S. (2013). Nanofluids flow between two rotating cylinders: Effects of thermophoresis and brownian motion. Journal of Thermophysics and Heat Transfer, 27(4), 748–755. https://doi.org/10.2514/1.T4122

    Article  Google Scholar 

  33. Shafey, A. E., Alharbi, F. M., Javed, A., Abbas, N., ALrafai, H. A., Nadeem, S., & Issakhov, A. (2021). Theoretical analysis of Brownian and thermophoresis motion effects for Newtonian fluid flow over nonlinear stretching cylinder. Case Studies in Thermal Engineering, 28, 101369. https://doi.org/10.1016/j.csite.2021.101369

    Article  Google Scholar 

  34. Hussain, F., Hussain, A., & Nadeem, S. (2020). Thermophoresis and Brownian model of pseudo-plastic nanofluid flow over a vertical slender cylinder. Mathematical Problems in Engineering, 2020, 1–10. https://doi.org/10.1155/2020/8428762

    Article  MathSciNet  Google Scholar 

  35. Sarfraz, M., Khan, M., & Ahmed, A. (2023). Study of thermophoresis and Brownian motion phenomena in radial stagnation flow over a twisting cylinder. Ain Shams Engineering Journal, 14(2), 101869. https://doi.org/10.1016/j.asej.2022.101869

    Article  Google Scholar 

  36. Obalalu, A. M., Olayemi, O. A., Odetunde, C. B., & Ajala, O. A. (2023). Significance of thermophoresis and Brownian motion on a reactive Casson-Williamson nanofluid past a vertical moving cylinder. Computational Thermal Sciences, 15(1) https://doi.org/10.1615/ComputThermalScien.2022041799

  37. Hillesdon, A. J., Pedley, T. J., & Kessler, J. O. (1995). The development of concentration gradients in a suspension of chemotactic bacteria. Bulletin of Mathematical Biology, 57, 299–344. https://doi.org/10.1007/BF02460620

    Article  Google Scholar 

  38. Pedley, T. J. (2010). Instability of uniform micro-organism suspensions revisited. Journal of Fluid Mechanics, 647, 335–359. https://doi.org/10.1017/S0022112010000108

    Article  MathSciNet  Google Scholar 

  39. Kuznetsov, A. V. (2011). Bio-thermal convection induced by two different species of microorganisms. International Communications in Heat and Mass Transfer, 38, 548–553. https://doi.org/10.1016/j.icheatmasstransfer.2011.02.006

    Article  Google Scholar 

  40. Hosseinzadeh, K., Roghani, S., Mogharrebi, A. R., Asadi, A., Waqas, M., & Ganji, D. D. (2020). Investigation of cross-fluid flow containing motile gyrotactic microorganisms and nanoparticles over a three-dimensional cylinder. Alexandria Engineering Journal, 59(5), 3297–3307. https://doi.org/10.1016/j.aej.2020.04.037

    Article  Google Scholar 

  41. Mallikarjuna, B., Rashad, A. M., Chamkha, A., & Abdou, M. M. M. (2018). Mixed bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical slender cylinder. Frontiers in Heat and Mass Transfer (FHMT), 15, 10–21. https://doi.org/10.5098/hmt.10.21

  42. Alshomrani, A. S., & Ramzan, M. (2019). Upshot of magnetic dipole on the flow of nanofluid along a stretched cylinder with gyrotactic microorganism in a stratified medium. Physica Scripta, 95(2), 025702. https://doi.org/10.1088/1402-4896/ab4067

    Article  Google Scholar 

  43. Othman, H. H., Ali, B., Jubair, S., YahyaAlmusawa, M., & M Aldin, S. (2023). Numerical simulation of the nanofluid flow consists of gyrotactic microorganism and subject to activation energy across an inclined stretching cylinder. Science and Reports, 13(1), 7719. https://doi.org/10.1038/s41598-023-34886-2

    Article  Google Scholar 

  44. Mandal, S., Shit, G. C., Shaw, S., & Makinde, O. D. (2022). Entropy analysis of thermo-solutal stratification of nanofluid flow containing gyrotactic microorganisms over an inclined radiative stretching cylinder. Thermal Science and Engineering Progress, 34, 101379. https://doi.org/10.1016/j.tsep.2022.101379

    Article  Google Scholar 

  45. Raizah, Z., Saeed, A., Bilal, M., Galal, A. M., & Bonyah, E. (2023). Parametric simulation of stagnation point flow of motile microorganism hybrid nanofluid across a circular cylinder with sinusoidal radius. Open Physics, 21(1), 20220205. https://doi.org/10.1515/phys-2022-0205

    Article  Google Scholar 

  46. Sedki, A. M. (2023). Computational analysis of MHD Cross nanofluid containing gyrotactic microorganisms over a permeable horizontal cylinder through a porous medium in presence of thermal radiation and chemical reaction. Partial Differential Equations in Applied Mathematics, 7, 100508. https://doi.org/10.1016/j.padiff.2023.100508

    Article  Google Scholar 

  47. Wakif, A. (2023). Numerical inspection of two-dimensional MHD mixed bioconvective flows of radiating Maxwell nanofluids nearby a convectively heated vertical surface. Waves in Random and Complex Media, 1–22. https://doi.org/10.1080/17455030.2023.2179853

  48. Yusuf, T. A., Mabood, F., Prasannakumara, B. C., & Sarris, I. E. (2021). Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation. Fluids, 6(3), 109. https://doi.org/10.3390/fluids6030109

    Article  Google Scholar 

  49. Ali, N., Abbasi, A., & Ahmad, I. (2015). Channel flow of Ellis fluid due to peristalsis. AIP Advances, 5(9), 097214. https://doi.org/10.1063/1.4932042

  50. Ellis, R. (1929). A rational exposition of the flow of viscoplastic materials. Univ London.

  51. Carreau, P. J. (1972). Rheological equations from molecular network theories. Journal of Rheology, 16(1), 99–127. https://doi.org/10.1122/1.549276

    Article  Google Scholar 

  52. Casson, N. (1959). A flow equation for pigment-oil suspensions of the printing ink type. Rheologica Acta, 8(2), 109–112. https://doi.org/10.1007/BF01515730

    Article  Google Scholar 

  53. Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417–437. https://doi.org/10.1016/0095-8522(65)90026-5

    Article  Google Scholar 

  54. Herschel, W. H., & Bulkley, R. (1926). Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Zeitschrift, 39(4), 291–300.

    Article  Google Scholar 

  55. Quemada, D. (1978). Rheological models derived from fractal geometry. Rheologica Acta, 17(1), 82–94. https://doi.org/10.1007/BF01516910

    Article  Google Scholar 

  56. Paul, A., Sarma, N., & Patgiri, B. (2023). Mixed convection of shear-thinning hybrid nanofluid flow across a radiative unsteady cone with suction and slip effect. Materials Today Communications, 37, 107522. https://doi.org/10.1016/j.mtcomm.2023.107522

  57. Hosseinzadeh, S., Hosseinzadeh, K., Hasibi, A., & Ganji, D. D. (2022). Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections. Case Studies in Thermal Engineering, 30, 101757. https://doi.org/10.1016/j.csite.2022.101757

    Article  Google Scholar 

  58. Khashi’ie, N. S., Arifin, N. M., & Pop, I. (2022). Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria Engineering Journal, 61(3), 1938–1945. https://doi.org/10.1016/j.aej.2021.07.032

    Article  Google Scholar 

  59. Gohar, Khan, T. S., Sene, N., Mouldi, A., & Brahmia, A. (2022). Heat and mass transfer of the Darcy-Forchheimer Casson hybrid nanofluid flow due to an extending curved surface. Journal of Nanomaterials, 2022, e3979168. https://doi.org/10.1155/2022/3979168

  60. Hiba, B., Redouane, F., Jamshed, W., Saleel, C. A., Devi, S. S. U., Prakash, M., Nisar, K. S., Vijayakumar, V., & Eid, M. R. (2021). A novel case study of thermal and streamline analysis in a grooved enclosure filled with (Ag–MgO/Water) hybrid nanofluid: Galerkin FEM. Case Studies in Thermal Engineering, 28, 101372. https://doi.org/10.1016/j.csite.2021.101372

    Article  Google Scholar 

  61. Tlili, I., Nabwey, H. A., Samrat, S. P., & Sandeep, N. (2020). 3D MHD nonlinear radiative flow of CuO-MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect. Science and Reports, 10(1), 9181. https://doi.org/10.1038/s41598-020-66102-w

    Article  Google Scholar 

  62. Murthy, M. K., Raju, C. S., Nagendramma, V., Shehzad, S. A., & Chamkha, A. J. (2019). Magnetohydrodynamics boundary layer slip Casson fluid flow over a dissipated stretched cylinder. Defect and Diffusion Forum, 393, 73–82. https://doi.org/10.4028/www.scientific.net/DDF.393.73

    Article  Google Scholar 

  63. Upadhya, S. M., Raju, C. S. K., Saleem, S., & Alderremy, A. A. (2018). Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, graphene and silver nanoparticles. Results in Physics, 9, 1377–1385. https://doi.org/10.1016/j.rinp.2018.04.038

    Article  Google Scholar 

  64. Ramzan, M., Shaheen, N., Chung, J. D., Kadry, S., Chu, Y. M., & Howari, F. (2021). Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder. Science and Reports, 11(1), 2357. https://doi.org/10.1038/s41598-021-81747-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.S. developed the proposed model and defined the governing PDEs, transformed the equations to ODEs, and computation was done numerically and results and discussion were initiated, illustrated, and graphical figures were drawn. A.P. initiated the idea of the research, supervised the research and contributed to the revision of the manuscript with grammatical and technical checking.

Corresponding author

Correspondence to Neelav Sarma.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, N., Paul, A. Thermophoresis and Brownian Motion Influenced Bioconvective Cylindrical Shaped Ag–CuO/H2O Ellis Hybrid Nanofluid Flow Along a Radiative Stretched Tube with Inclined Magnetic Field. BioNanoSci. (2023). https://doi.org/10.1007/s12668-023-01280-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-023-01280-1

Keywords

Navigation