Skip to main content
Log in

Local Similar Solution of Magnetized Hybrid Nanofluid Flow Due to Exponentially Stretching/Shrinking Sheet

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The importance of thermal efficiency in major industrial and engineering sectors cannot be overstated. Numerous processes within these domains require substantial heat transfer, and conventional fluids often fall short in generating the necessary amount of heat for these operations. Recognizing this limitation, there arose a need to enhance the thermal conductivity of ordinary liquids. In response to this challenge, researchers and scientists proposed a groundbreaking idea: the introduction of metallic and non-metallic nano additives into the base fluid to improve its thermal effectiveness. This innovative approach gave rise to a new category of liquids known as hybrid nanofluids. In this article, we delve into the analysis of the 2D steady flow of SWCNT-Fe3O4/H2O and MWCNT-Cu/H2O-based hybrid nanofluid over a stretching and shrinking sheet, taking into account factors such as suction/injection and thermophysical impacts. The utilization of similarity variables enables the reduction of partial differential equations to a more manageable system of ordinary differential equations. To solve these transformed ordinary differential equations, a numerical technique, specifically the shooting algorithm with the bvp4c solver, is employed. The results are presented and elucidated through graphical representations, providing valuable insights into the behavior of the system under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available as per the requirement of journal guidelines.

References

  1. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL (United States).

  2. Mahanthesh, B., & Thriveni, K. (2021). Effects of aggregation on TiO2–ethylene glycol nano liquid over an inclined cylinder with exponential space-based heat source: A sensitivity analysis. Journal of Thermal Analysis and Calorimetry, 147, 835–1848.

    Google Scholar 

  3. Wakif, A., Chamkha, A., Thumma, T., Animasaun, I. L., & Sehaqui, R. (2020). Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. Journal of Thermal Analysis and Calorimetry, 1–20, 1201–1220.

    Google Scholar 

  4. Farooq, U., Waqas, H., Imran, M., Albakri, A., & Muhammad, T. (2021). Numerical investigation for melting heat transport of nanofluids due to stretching surface with Cattaneo-Christov thermal model. Alexandria Engineering Journal, 61(9), 6635–6644.

    Google Scholar 

  5. Farooq, U., Waqas, H., Khan, M. I., Khan, S. U., Chu, Y. M., & Kadry, S. (2021). Thermally radioactive bioconvection flow of Carreau nanofluid with modified Cattaneo-Christov expressions and exponential space-based heat source. Alexandria Engineering Journal, 60(3), 3073–3086.

    Google Scholar 

  6. Sharma, K., & Kumar, S. (2023). Impacts of low oscillating magnetic field on ferrofluid flow over upward/downward moving rotating disk with effects of nanoparticle diameter and nanolayer. Journal of Magnetism and Magnetic Materials, 575, 170720.

    CAS  Google Scholar 

  7. Kumar, S., & Sharma, K. (2023). Entropy optimization analysis of Marangoni convective flow over a rotating disk moving vertically with an inclined magnetic field and nonuniform heat source. Heat Transfer, 52(2), 1778–1805.

    Google Scholar 

  8. Kumar, S., & Sharma, K. (2023). Impacts of Stefan blowing on Reiner-Rivlin fluid flow over moving rotating disk with chemical reaction. Arabian Journal for Science and Engineering, 48(3), 2737–2746.

    CAS  Google Scholar 

  9. Kumar, S., & Sharma, K. (2022). Mathematical modeling of MHD flow and radiative heat transfer past a moving porous rotating disk with Hall effect. Multidiscipline Modeling in Materials and Structures, 18(3), 445–458.

    CAS  Google Scholar 

  10. Sharma, K., Kumar, S., & Vijay, N. (2022). Insight into the motion of water-copper nanoparticles over a rotating disk moving upward/downward with viscous dissipation. International Journal of Modern Physics B, 36(29), 2250210.

    ADS  CAS  Google Scholar 

  11. Nadeem, S., Akhtar, S., & Abbas, N. (2020). Heat transfer of Maxwell base fluid flow of nanomaterial with MHD over a vertical moving surface. Alexandria Engineering Journal, 59(3), 1847–1856.

    Google Scholar 

  12. Naz, R., Noor, M., Hayat, T., Javed, M., & Alsaedi, A. (2020). The dynamism of magnetohydrodynamic cross nanofluid with particulars of entropy generation and gyrotactic motile microorganisms. International Communications in Heat and Mass Transfer, 110, 104431.

    Google Scholar 

  13. Rasool, G., Shafiq, A., Khan, I., Baleanu, D., Nisar, K. S., & Shahzadi, G. (2020). Entropy generation and consequences of MHD in Darcy-Forchheimer nanofluid flow bounded by non-linearly stretching surface. Symmetry, 12(4), 652.

    ADS  CAS  Google Scholar 

  14. Mabood, F., Ashwinkumar, G. P., & Sandeep, N. (2020). Simultaneous results for unsteady flow of MHD hybrid nano liquid above a flat/slandering surface. Journal of Thermal Analysis and Calorimetry, 146, 227–239.

    Google Scholar 

  15. Rasool, G., Chamkha, A. J., Muhammad, T., Shafiq, A., & Khan, I. (2020). DarcyForchheimer relation in Casson type MHD nanofluid flows over a non-linear stretching surface. Propulsion and Power Research, 9(2), 159–168.

    Google Scholar 

  16. Khan, U., Ahmed, N., & Mohyud-Din, S. T. (2017). Numerical investigation for three-dimensional squeezing flow of a nanofluid in a rotating channel with a lower stretching wall suspended by carbon nanotubes. Applied thermal engineering, 113, 1107–1117.

    CAS  Google Scholar 

  17. Waqas, H., Muhammad, T., Noreen, S., Farooq, U., & Alghamdi, M. (2021). Cattaneo-Christov heat flux and entropy generation on hybrid nanofluid flow in a nozzle of a rocket engine with melting heat transfer. Case Studies in Thermal Engineering, 28, 101504.

    Google Scholar 

  18. Farooq, U., Waqas, H., Imran, M., Alghamdi, M., & Muhammad, T. (2021). On melting heat transport and nanofluid in a nozzle of a liquid rocket engine with entropy generation. Journal of Materials Research and Technology, 14, 3059–3069.

    CAS  Google Scholar 

  19. Waqas, H., Farooq, U., Alghamdi, M., & Muhammad, T. (2021). Significance of surface catalyzed reactions in SiO2-H2O nanofluid flow through porous media. Case Studies in Thermal Engineering, 27, 101228.

    Google Scholar 

  20. Haldar, S., Mukhopadhyay, S., & Layek, G. C. (2021). Effects of thermal radiation on Eyring-Powell fluid flow and heat transfer over a power-law stretching permeable surface. International Journal for Computational Methods in Engineering Science and Mechanics, 22(5), 366–375.

    ADS  MathSciNet  CAS  Google Scholar 

  21. Giri, S. S. (2023). Framing the features of nanolayer and diameter of carbon nanotubes in the flow of blood over a stretching cylinder in presence of magnetic induction. Numerical Heat Transfer, Part A: Applications, pp. 1–21.

    Google Scholar 

  22. Giri, S. S., Das, K., & Kundu, P. K. (2022). Computational analysis of thermal and mass transmit in a hydromagnetic hybrid nanofluid flow over a slippery curved surface. International Journal of Ambient Energy, 43(1), 6062–6070.

    CAS  Google Scholar 

  23. Giri, S. S. (2023). Outlining the features of nanoparticle diameter and solid–liquid interfacial layer and Hall current effect on a nanofluid flow configured by a slippery bent surface. Heat Transfer, 52(2), 1947–1970.

    Google Scholar 

  24. Das, K., Giri, S. S., & Kundu, P. K. (2021). Influence of Hall current effect on hybrid nanofluid flow over a slender stretching sheet with zero nanoparticle flux. Heat Transfer, 50(7), 7232–7250.

    Google Scholar 

  25. Giri, S. S., Das, K., & Kundu, P. K. (2019). Dynamics of nonuniform viscosity of unsteady CuO–H2O nanofluid flow from a spinning body. Heat Transfer—Asian Research, 48(6), 2542–2556.

    Google Scholar 

  26. Xue, Q. (2005). Model for thermal conductivity of carbon nanotube-based composites. Physica B: Condensed Matter, 368, 302–307.

    ADS  CAS  Google Scholar 

  27. Tang, H., Cao, Q., He, Z., Wang, S., Han, J., Li, T., ... & Li, X. (2020). SnO2–carbon nanotubes hybrid electron transport layer for efficient and hysteresis-free planar perovskite solar cells. Solar RRL, 4(1), 1900415

  28. Qin, W., Chen, C., Zhou, J., & Meng, J. (2020). Synergistic effects of graphene/carbon nanotubes hybrid coating on the interfacial and mechanical properties of fiber composites. Materials, 13(6), 1457.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gholinia, M., Hosseinzadeh, K., & Ganji, D. D. (2020). Investigation of different base fluids suspended by CNTs hybrid nanoparticles over a vertical circular cylinder with a sinusoidal radius. Case Studies in Thermal Engineering, 21, 100666.

    Google Scholar 

  30. Javanbakht, M. (2021). High-pressure phase evolution under hydrostatic pressure in a single imperfect crystal due to nanovoids. Materialia, 20, 101199.

    Google Scholar 

  31. Roy, A. M. (2021). Formation and stability of nanosized, undercooled propagating intermediate melt during β → δ phase transformation in HMX nanocrystal. Europhysics Letters, 133(5), 56001.

    ADS  CAS  Google Scholar 

  32. Arshad, M., Hussain, A., Elfasakhany, A., Gouadria, S., Awrejcewicz, J., Pawłowski, W., ... & M. Alharbi, F. (2022). The magneto-hydrodynamic flow above the exponentially stretchable surface with chemical reaction. Symmetry14(8), 1688

  33. Hassan, A., Hussain, A., Arshad, M., Awrejcewicz, J., Pawlowski, W., Alharbi, F. M., & Karamti, H. (2022). Heat and mass transport analysis of MHD rotating hybrid nanofluids conveying silver and molybdenum di-sulfide nano-particles under the effect of linear and non-linear radiation. Energies, 15(17), 6269.

    CAS  Google Scholar 

  34. Arshad, M., Hussain, A., Shah, S. A. G. A., Wróblewski, P., Elkotb, M. A., Abdelmohimen, M. A., & Hassan, A. (2022). Thermal energy investigation of magneto-hydrodynamic nano-material liquid flow over a stretching sheet: Comparison of single and composite particles. Alexandria Engineering Journal, 61(12), 10453–10462.

    Google Scholar 

  35. Arshad, M., Hussain, A., Hassan, A., Karamti, H., Wroblewski, P., Khan, I., ... & Galal, A. M. (2022). Scrutinization of slip due to lateral velocity on the dynamics of engine oil conveying cupric and alumina nanoparticles subject to Coriolis force. Mathematical Problems in Engineering2022

  36. Arshad, M., Karamti, H., Awrejcewicz, J., Grzelczyk, D., & Galal, A. M. (2022). Thermal transmission comparison of nanofluids over stretching surface under the influence of magnetic dield. Micromachines, 13(8), 1296.

    PubMed  PubMed Central  Google Scholar 

  37. Hassan, A., Hussain, A., Arshad, M., Gouadria, S., Awrejcewicz, J., Galal, A. M., & Eswaramoorthi, S. (2022). Insight into the significance of viscous dissipation and heat generation/absorption in magneto-hydrodynamic radiative Casson fluid flow with first-order chemical reaction. Frontiers in Physics, 10, 605.

    Google Scholar 

  38. Arshad, M., & Hassan, A. (2022). A numerical study on the hybrid nanofluid flow between a permeable rotating system. The European Physical Journal Plus, 137(10), 1126.

    ADS  CAS  Google Scholar 

  39. Dinarvand, S. (2019). Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: A novel hybridity model. Microsystem Technologies, 25(7), 2609–2623.

    CAS  Google Scholar 

  40. Hady, F. M., Ibrahim, F. S., Abdel-Gaied, S. M., & Eid, M. R. (2012). Radiation effect on the viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet. Nanoscale Research Letters, 7(1), 1–13.

    Google Scholar 

  41. Eid, M. R., & Nafe, M. A. (2022). Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves in Random and Complex Media, 32(3), 1103–1127.

    ADS  MathSciNet  Google Scholar 

  42. Bidin, B., & Nazar, R. (2009). Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. European Journal of Scientific Research, 33, 710–717.

    Google Scholar 

  43. Ishak, A. (2011). MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malays., 40, 391–395.

    Google Scholar 

  44. Waini, I., Ishak, A., & Pop, I. (2020). Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chinese Journal of Physics, 68(468), 482.

    MathSciNet  Google Scholar 

  45. Khan, L. A., Raza, M., Mir, N. A., & Ellahi, R. (2020). Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. Journal of Thermal Analysis and Calorimetry, 140(3), 879–890.

    CAS  Google Scholar 

  46. Mukhtar, T., Jamshed, W., Aziz, A., & Al‐ Kouz, W. (2020). Computational investigation of heat transfer in a flow subjected to magnetohydrodynamic of Maxwell nanofluid over a stretched flat sheet with thermal radiation. Numerical Methods for Partial Differential Equations

  47. Ghosh, S., & Mukhopadhyay, S. (2020). Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip. Neural Computing and Applications, 32, 7201–7211.

    Google Scholar 

  48. Hafidzuddin, E. H., Nazar, R., Arifin, N. M., & Pop, I. (2016). Boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity. Journal of applied fluid mechanics, 9(4), 2025–2036.

    Google Scholar 

  49. Waini, I., Ishak, A., & Pop, I. (2020). Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chinese Journal of Physics, 68, 468–482.

    ADS  MathSciNet  CAS  Google Scholar 

Download references

Funding

The researchers received funding from the Deanship of Scientific Research, Taif University, for this work.

Author information

Authors and Affiliations

Authors

Contributions

Umar Farooq and Sobia Noreen: solved problem and wrote manuscript, software, simulation and plotting graphs; Muhammad Imran and Hassan Waqas: methodology verified and proof read, supervision; Shan Ali Khan and Aleena Ramzan: formal analysis, re-investigation; Nahid Fatima: re-validation and adding analysis of data; Abdul Bariq and S. K. Elagan: conceptualization.

Corresponding author

Correspondence to Abdul Bariq.

Ethics declarations

Ethics Approval

Not applicable.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, U., Waqas, H., Bariq, A. et al. Local Similar Solution of Magnetized Hybrid Nanofluid Flow Due to Exponentially Stretching/Shrinking Sheet. BioNanoSci. 14, 368–379 (2024). https://doi.org/10.1007/s12668-023-01276-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01276-x

Keywords

Navigation