Skip to main content

Advertisement

Log in

Piperine-Loaded Zein Electrospun Nanofibers: Development, Characterization and Antibacterial Application

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

One therapeutic approach to overcome the antibiotic resistance of biofilms is to employ new drug delivery systems. Meanwhile, investigations on nanofibers with appropriate formulations due to their unique characteristics are being conducted remarkably. Piperine, as a natural substance, and its antibacterial effects have been confirmed in several studies. Therefore, in the current study, the antibacterial potential of piperine-loaded zein nanofibers on Staphylococcus epidermidis biofilm was evaluated. The nanofibers were prepared by electrospinning technique with different concentrations of piperine (2.5, 5, and 10% w/v). The morphology, thermal stability, crystallinity, and functional groups of the nanofibers were characterized by FE-SEM, TGA, XRD, and FTIR, respectively. The results showed that the nanofibers had uniform and bead-free morphology, and the diameter of the nanofibers increased with the increase in piperine concentration. Piperine improved the thermal stability of zein nanofibers and maintained its crystalline structure. FTIR spectra indicated no chemical interaction between zein and piperine in the nanofibers. The nanofibers exhibited antibacterial activity against Staphylococcus epidermidis biofilm in a concentration-dependent manner. The nanofibers containing 10% piperine had the highest antibacterial efficacy, comparable to gentamicin. The nanofibers also showed higher biofilm removal ability than free piperine. These findings suggest that piperine-loaded zein nanofibers are promising candidates for preventing and treating biofilm-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data are available on request.

References

  1. Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences., 104(27), 11197–11202.

    ADS  CAS  Google Scholar 

  2. Hurlow, J., Couch, K., Laforet, K., Bolton, L., Metcalf, D., & Bowler, P. (2015). Clinical biofilms: A challenging frontier in wound care. Advances in Wound Care, 4(5), 295–301.

    PubMed  PubMed Central  Google Scholar 

  3. Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D., & James, G. (1994). Biofilms, the customized microniche. Journal of Bacteriology., 176(8), 2137–2142.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, D., Accavitti, M., & Bryers, J. (2005). Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clinical and Vaccine Immunology., 12(1), 93–100.

    CAS  Google Scholar 

  5. Widerström, M., Wiström, J., Sjöstedt, A., & Monsen, T. (2012). Coagulase-negative staphylococci: Update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. European Journal of Clinical Microbiology & Infectious Diseases, 31(1), 7–20.

    Google Scholar 

  6. Rupp, M. E., Fey, P. D. (2010). Staphylococcus epidermidis and other coagulase-negative staphylococci. Mandell, Douglas, and Bennett's principles and practice of infectious diseases. pp 2579–2589.

  7. O’Gara, J. P. (2007). ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiology Letters, 270(2), 179–188.

    CAS  PubMed  Google Scholar 

  8. O’Gara, J. P., & Humphreys, H. (2001). Staphylococcus epidermidis biofilms: Importance and implications. Journal of Medical Microbiology, 50(7), 582–7.

    PubMed  Google Scholar 

  9. Schierholz, J., & Beuth, J. (2001). Implant infections: A haven for opportunistic bacteria. Journal of Hospital Infection., 49(2), 87–93.

    CAS  PubMed  Google Scholar 

  10. Riool, M., de Boer, L., Jaspers, V., van der Loos, C. M., van Wamel, W. J., Wu, G., et al. (2014). Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomaterialia, 10(12), 5202–5212.

    CAS  PubMed  Google Scholar 

  11. Moosavian, S. A., Hashemi, M., Etemad, L., Daneshmand, S., & Salmasi, Z. (2022). Melanoma-derived exosomes: Versatile extracellular vesicles for diagnosis, metastasis, immune modulation, and treatment of melanoma. International Immunopharmacology, 113, 109320.

    Google Scholar 

  12. Arnold, W. V., Shirtliff, M. E., & Stoodley, P. (2013). Bacterial biofilms and periprosthetic infections. The Journal of Bone and Joint Surgery American Volume, 95(24), 2223.

    PubMed  Google Scholar 

  13. Khardori, N., & MY,. (1995). Biofilms in device-related infections. Journal of Industrial Microbiology., 15(3), 141–7.

    CAS  PubMed  Google Scholar 

  14. Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T.-F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon., 4(12), e01067.

    PubMed  PubMed Central  Google Scholar 

  15. Chen, M., Yu, Q., & Sun, H. (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14(9), 18488–18501.

    PubMed  PubMed Central  Google Scholar 

  16. Natalio, F., André, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., et al. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7(8), 530–535.

    ADS  CAS  PubMed  Google Scholar 

  17. van Hengel, I. A., Riool, M., Fratila-Apachitei, L. E., Witte-Bouma, J., Farrell, E., Zadpoor, A. A., et al. (2017). Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 140, 1–15.

    PubMed  Google Scholar 

  18. Wang, Q., & Webster, T. J. (2012). Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. Journal of Biomedical Materials Research Part A, 100(12), 3205–3210.

    PubMed  Google Scholar 

  19. Hirschfeld, J., Akinoglu, E. M., Wirtz, D. C., Hoerauf, A., Bekeredjian-Ding, I., Jepsen, S., et al. (2017). Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomedicine: Nanotechnology, Biology and Medicine 13 (4), 1587–93.

  20. Shi, S.-f, Jia, J.-f, Guo, X.-k, Zhao, Y.-p, Chen, D.-s, Guo, Y.-y, et al. (2016). Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. International Journal of Nanomedicine., 11, 6499.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Seil, J. T., & Webster, T. J. (2011). Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomaterialia., 7(6), 2579–2584.

    CAS  PubMed  Google Scholar 

  22. Zhang, J., Lin, T., & Wang, X. (2012). Carbon and polymer nanofiber reinforcements in polymer matrix composites: Processing and applications (pp. 55–70). Elsevier.

    Google Scholar 

  23. Wei, Q., Tao, D., & Xu, Y. (2012). Nanofibers: Principles and manufacture (pp. 3–21). Elsevier.

    Google Scholar 

  24. Thavasi, V., Singh, G., & Ramakrishna, S. (2008). Electrospun nanofibers in energy and environmental applications. Energy & Environmental Science., 1(2), 205–221.

    CAS  Google Scholar 

  25. Yoon, K., Hsiao, B. S., & Chu, B. (2008). Functional nanofibers for environmental applications. Journal of Materials Chemistry., 18(44), 5326–5334.

    CAS  Google Scholar 

  26. Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., & Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of controlled release., 185, 12–21.

    CAS  PubMed  Google Scholar 

  27. Zhang, B., Kang, F., Tarascon, J.-M., & Kim, J.-K. (2016). Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science., 76, 319–380.

    CAS  Google Scholar 

  28. Calamak, S., Shahbazi, R., Eroglu, I., Gultekinoglu, M., & Ulubayram, K. (2017). An overview of nanofiber-based antibacterial drug design. Expert Opinion on Drug Discovery, 12(4), 391–406.

    CAS  PubMed  Google Scholar 

  29. Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569.

    CAS  Google Scholar 

  30. Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89.

    ADS  CAS  PubMed  Google Scholar 

  31. Alghoraibi, I., Alomari, S. (2018). Different methods for nanofiber design and fabrication. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of nanofibers. Springer, Cham. pp 1–46.

  32. Venugopal, J., & Ramakrishna, S. (2005). Applications of polymer nanofibers in biomedicine and biotechnology. Applied Biochemistry and Biotechnology., 125(3), 147–157.

    CAS  PubMed  Google Scholar 

  33. Bombin, A. D. J., Dunne, N. J., & McCarthy, H. O. (2020). Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Materials Science and Engineering: C., 114, 110994.

    Google Scholar 

  34. Aravamudhan, A., Ramos, D. M., Nada, A. A., & Kumbar, S. G. (2014). Natural polymers: Polysaccharides and their derivatives for biomedical applications (pp. 67–89). Elsevier.

    Google Scholar 

  35. Mogoşanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics., 463(2), 127–136.

    PubMed  Google Scholar 

  36. Shukla, R., & Cheryan, M. (2001). Zein: The industrial protein from corn. Industrial Crops and Products., 13(3), 171–192.

    CAS  Google Scholar 

  37. Corradini, E., Curti, P. S., Meniqueti, A. B., Martins, A. F., Rubira, A. F., & Muniz, E. C. (2014). Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. International Journal of Molecular Sciences, 15(12), 22438–22470.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Labib, G. (2018). Overview on zein protein: A promising pharmaceutical excipient in drug delivery systems and tissue engineering. Expert Opinion on Drug Delivery., 15(1), 65–75.

    CAS  PubMed  Google Scholar 

  39. Paliwal, R., & Palakurthi, S. (2014). Zein in controlled drug delivery and tissue engineering. Journal of Controlled Release, 189, 108–122.

    CAS  PubMed  Google Scholar 

  40. Gong, S., Wang, H., Sun, Q., Xue, S.-T., & Wang, J.-Y. (2006). Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials, 27(20), 3793–3799.

    CAS  PubMed  Google Scholar 

  41. Tang, N., & Zhuang, H. (2014). Evaluation of antioxidant activities of zein protein fractions. Journal of Food Science, 79(11), C2174–C2184.

    CAS  PubMed  Google Scholar 

  42. Tan, H., Zhou, H., Guo, T., Li, J., Zhang, C., Wang, S., et al. (2022). Zein structure and its hidden zearalenone: Effect of zein extraction methods. Food Chemistry, 374, 131563.

    CAS  PubMed  Google Scholar 

  43. Li, D., Wei, Z., Sun, J., & Xue, C. (2022). Tremella polysaccharides-coated zein nanoparticles for enhancing stability and bioaccessibility of curcumin. Current Research in Food Science, 5, 611–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Khan, M. A., Chen, L., & Liang, L. (2021). Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles. Food Hydrocolloids, 113, 106477.

    CAS  Google Scholar 

  45. Yin, Y., Zhou, F., Yin, Y., & Peng, Y. (2021). Development of water-soluble zein colloid particles and in situ antibacterial evaluation by multiple headspace extraction gas chromatography. Food Science and Human Wellness., 10(2), 191–196.

    CAS  Google Scholar 

  46. Gorgani, L., Mohammadi, M., Najafpour, G. D., & Nikzad, M. (2017). Piperine—The bioactive compound of black pepper: From isolation to medicinal formulations. Comprehensive Reviews in Food Science and Food Safety., 16(1), 124–140.

    CAS  PubMed  Google Scholar 

  47. Tiwari, A., Mahadik, K. R., & Gabhe, S. Y. (2020). Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Medicine in Drug Discovery., 7, 100027.

    Google Scholar 

  48. Alshehri, S., Haq, N., & Shakeel, F. (2018). Solubility, molecular interactions and mixing thermodynamic properties of piperine in various pure solvents at different temperaturesSultanAlshehriNazrulHaqFaiyazShakeel. Journal of Molecular Liquids., 250, 63–70.

    CAS  Google Scholar 

  49. Kolhe, S. R., Borole, P., Patel, U. (2011). Extraction and evaluation of piperine from Piper nigrum Linn. International Journal of Applied Biology and Pharmaceutical Technology, 2(2), 144–149.

  50. Li, N., Wen, S., Chen, G., & Wang, S. (2020). Antiproliferative potential of piperine and curcumin in drug-resistant human leukemia cancer cells are mediated via autophagy and apoptosis induction, S-phase cell cycle arrest and inhibition of cell invasion and migration. Journal of BUON, 25, 401–406.

    PubMed  Google Scholar 

  51. Santos, J., Brito, M., Ferreira, R., Moura, A. P., Sousa, T., Batista, T., et al. (2018). Th1-biased immunomodulation and in vivo antitumor effect of a novel piperine analogue. International Journal of Molecular Sciences., 19(9), 2594.

    PubMed  PubMed Central  Google Scholar 

  52. Hu, X., Wu, D., Tang, L., Zhang, J., Zeng, Z., Geng, F., et al. (2022). Binding mechanism and antioxidant activity of piperine to hemoglobin. Food Chemistry., 394, 133558.

    CAS  PubMed  Google Scholar 

  53. Atal, S., Agrawal, R. P., Vyas, S., Phadnis, P., & Rai, N. (2012). Evaluation of the effect of piperine per se on blood glucose level in alloxan-induced diabetic mice. Acta Poloniae Pharmaceutica, 69(5), 965–969.

    CAS  PubMed  Google Scholar 

  54. BrahmaNaidu, P., Nemani, H., Meriga, B., Mehar, S. K., Potana, S., & Ramgopalrao, S. (2014). Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chemico-Biological Interactions, 221, 42–51.

    CAS  PubMed  Google Scholar 

  55. Aldaly, Z. T. (2010). Antimicrobial activity of piperine purified from Piper nigrum. Journal of Basrah Researches, 36, 54–61.

  56. Yadav, S. S., Singh, M. K., Hussain, S., Dwivedi, P., Khattri, S., Singh, K. (2023). Therapeutic spectrum of piperine for clinical practice: a scoping review. Critical Reviews in Food Science and Nutrition, 63(22):5813–5840.

  57. Aswar, U., Shintre, S., Chepurwar, S., & Aswar, M. (2015). Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharmaceutical Biology., 53(9), 1358–1366.

    CAS  PubMed  Google Scholar 

  58. Zutshi, R., Singh, R., Zutshi, U., Johri, R., & Atal, C. (1985). Influence of piperine on rifampicin blood levels in patients of pulmonary tuberculosis. The Journal of the Association of Physicians of India., 33(3), 223–224.

    CAS  PubMed  Google Scholar 

  59. Pattanaik, S., Hota, D., Prabhakar, S., Kharbanda, P., & Pandhi, P. (2009). Pharmacokinetic interaction of single dose of piperine with steady-state carbamazepine in epilepsy patients. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 23(9), 1281–1286.

    CAS  Google Scholar 

  60. Kasibhatta, R., & Naidu, M. (2007). Influence of piperine on the pharmacokinetics of nevirapine under fasting conditions: A randomised, crossover, placebo-controlled study. Drugs in R & D., 8, 383–391.

    CAS  Google Scholar 

  61. Khan, I. A., Mirza, Z. M., Kumar, A., Verma, V., & Qazi, G. N. (2006). Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 50(2), 810–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Atal, C., Zutshi, U., & Rao, P. (1981). Scientific evidence on the role of Ayurvedic herbals on bioavailability of drugs. Journal of Ethnopharmacology, 4(2), 229–232.

    CAS  PubMed  Google Scholar 

  63. Khairani, S., Fauziah, N., Wiraswati, H. L., Panigoro, R., Setyowati, E. Y., & Berbudi, A. (2021). The potential use of a curcumin-piperine combination as an antimalarial agent: A systematic review. Journal of Tropical Medicine, 2021, 1–15.

    Google Scholar 

  64. Pawar, K. S., Mastud, R. N., Pawar, S. K., Pawar, S. S., Bhoite, R. R., Bhoite, R. R., et al. (2021). Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Frontiers in Pharmacology, 12, 1056.

    Google Scholar 

  65. Abdul Manap, A. S., Wei Tan, A. C., Leong, W. H., Yin Chia, A. Y., Vijayabalan, S., Arya, A., et al. (2019). Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay. Frontiers in Aging Neuroscience, 11, 206.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Phuna, Z. X., Yu, J. K. E., Tee, J. Y., Chuah, S. Q., Tan, N. W. H., Vijayabalan, S., et al. (2020). In vitro evaluation of nanoemulsions of curcumin, piperine, and tualang honey as antifungal agents for candida species. Journal of Applied Biotechnology Reports, 7(3), 189–197.

    Google Scholar 

  67. Db, M., Sreedharan, S., & Mahadik, K. (2018). Role of piperine as an effective bioenhancer in drug absorption. Pharm Anal Acta, 9(7), 1–4.

    Google Scholar 

  68. Kesarwani, K., & Gupta, R. (2013). Bioavailability enhancers of herbal origin: An overview. Asian Pacific Journal of Tropical Biomedicine, 3(4), 253–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Duan, X., Chen, H.-l, & Guo, C. (2022). Polymeric nanofibers for drug delivery applications: A recent review. Journal of Materials Science: Materials in Medicine., 33(12), 78.

    CAS  PubMed  Google Scholar 

  70. Ghaznavi, H., Hajinezhad, M. R., Shirvaliloo, M., Shahraki, S., Shahraki, K., Saravani, R., et al. (2022). Effects of folate-conjugated Fe2O3@ Au core–shell nanoparticles on oxidative stress markers, DNA damage, and histopathological characteristics: Evidence from in vitro and in vivo studies. Medical Oncology, 39(9), 122.

    CAS  PubMed  Google Scholar 

  71. Thakkar, S., & Misra, M. (2017). Electrospun polymeric nanofibers: New horizons in drug delivery. European Journal of Pharmaceutical Sciences, 107, 148–167.

    CAS  PubMed  Google Scholar 

  72. Nadaf, A., Gupta, A., Hasan, N., Ahmad, S., Kesharwani, P., & Ahmad, F. J. (2022). Recent update on electrospinning and electrospun nanofibers: Current trends and their applications. RSC Advances, 12(37), 23808–23828.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miri, M. A., Movaffagh, J., Najafi, M. B. H., Najafi, M. N., Ghorani, B., & Koocheki, A. (2016). Optimization of elecrospinning process of zein using central composite design. Fibers and Polymers, 17, 769–777.

    CAS  Google Scholar 

  74. Torres-Giner, S., Gimenez, E., & Lagaron, J. M. (2008). Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocolloids, 22(4), 601–614.

    CAS  Google Scholar 

  75. Ghorani, B. (2012). Production and properties of electrospun webs for therapeutic applications. Dissertation, University of Leeds.

  76. Neo, Y. P. (2014) Electrospinning as a novel encapsulation method for food applications. Dissertation, The University of Auckland.

  77. Yoksan R, Jirawutthiwongchai J, Arpo K. (2010). Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids and Surfaces B: Biointerfaces, 76(1), 292-7.

  78. Huang, W., Zou, T., Li, S., Jing, J., Xia, X., & Liu, X. (2013). Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. An Official Journal of the American Association of Pharmaceutical Scientists, 14, 675–681.

    CAS  Google Scholar 

  79. Brahatheeswaran, D., Mathew, A., Aswathy, R. G., Nagaoka, Y., Venugopal, K., Yoshida, Y., et al. (2012). Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomedical Materials., 7(4), 045001.

    ADS  PubMed  Google Scholar 

  80. Hosseini, H., Shahraky, M. K., Amani, A., & Landi, F. S. (2021). Electrospinning of polyvinyl alcohol/chitosan/hyaluronic acid nanofiber containing growth hormone and its release investigations. Polymers for Advanced Technologies., 32(2), 574–581.

    CAS  Google Scholar 

  81. Shahraki, O., & Daneshmand, S. (2023). Lycopene-loaded solid lipid nanoparticles: Preparation, characterization, ROS-scavenging, and in vitro anti-melanogenesis evaluations. Letters in Drug Design & Discovery., 20(11), 1768–1774.

    CAS  Google Scholar 

  82. Shahraki, O., Shayganpour, M., Hashemzaei, M., & Daneshmand, S. (2023). Solid lipid nanoparticles (SLNs), the potential novel vehicle for enhanced in vivo efficacy of hesperidin as an anti-inflammatory agent. Bioorganic Chemistry., 131, 106333.

    CAS  PubMed  Google Scholar 

  83. Mehlman, I. J., Sanders, A. C., Simon, N. T., & Olson, J. C., Jr. (1974). Methodology for recovery and identification of enteropathogenic Escherichia coli. Journal of the Association of Official Analytical Chemists., 57(1), 101–110.

    CAS  Google Scholar 

  84. Rao, Y. V., Romesh, M., Singh, A., & Chakrabarti, R. (2004). Potentiation of antibody production in Indian major carp Labeo rohita, rohu, by Achyranthes aspera as a herbal feed ingredient. Aquaculture, 238(1–4), 67–73.

    CAS  Google Scholar 

  85. Marzouk, B., Marzouk, Z., Mastouri, M., Fenina, N., & Aouni, M. (2011). Comparative evaluation of the antimicrobial activity of Citrullus colocynthis immature fruit and seed organic extracts. African Journal of Biotechnology., 10(11), 2130–2134.

    Google Scholar 

  86. Carnell, L. S., Siochi, E. J., Holloway, N. M., Stephens, R. M., Rhim, C., Niklason, L. E., et al. (2008). Aligned mats from electrospun single fibers. Macromolecules, 41(14), 5345–5349.

    ADS  CAS  Google Scholar 

  87. Ardekani-Zadeh, A. H., & Hosseini, S. F. (2019). Electrospun essential oil-doped chitosan/poly (ε-caprolactone) hybrid nanofibrous mats for antimicrobial food biopackaging exploits. Carbohydrate Polymers., 223, 115108.

    Google Scholar 

  88. Teilaghi, S., Movaffagh, J., & Bayat, Z. (2020). Preparation as well as evaluation of the nanofiber membrane loaded with Nigella sativa extract using the electrospinning method. Journal of Polymers and the Environment., 28, 1614–1625.

    CAS  Google Scholar 

  89. Bumedi, F., Aran, M., Miri, M. A., & Seyedabadi, E. (2023). Preparation and characterization of zein electrospun fibers loaded with savory essential oil for fruit preservation. Industrial Crops and Products., 203, 117121.

    CAS  Google Scholar 

  90. Heydari-Majd, M., Rezaeinia, H., Shadan, M. R., Ghorani, B., & Tucker, N. (2019). Enrichment of zein nanofibre assemblies for therapeutic delivery of Barije (Ferula gummosa Boiss) essential oil. Journal of Drug Delivery Science and Technology., 54, 101290.

    CAS  Google Scholar 

  91. Ramakrishna, S. (2005). An Introduction to electrospinning and nanofibers. Singapore: World Scientific.

  92. Dehcheshmeh, M. A., & Fathi, M. (2019). Production of core-shell nanofibers from zein and tragacanth for encapsulation of saffron extract. International Journal of Biological Macromolecules., 122, 272–279.

    CAS  PubMed  Google Scholar 

  93. Neo, Y. P., Ray, S., Jin, J., Gizdavic-Nikolaidis, M., Nieuwoudt, M. K., Liu, D., et al. (2013). Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein–gallic acid system. Food Chemistry., 136(2), 1013–1021.

    CAS  PubMed  Google Scholar 

  94. Weng, J., Zou, Y., Zhang, Y., & Zhang, H. (2023). Stable encapsulation of camellia oil in core–shell zein nanofibers fabricated by emulsion electrospinning. Food Chemistry., 429, 136860.

    CAS  PubMed  Google Scholar 

  95. Dahiya, S., Rani, R., Dhingra, D., Kumar, S., & Dilbaghi, N. (2018). Conjugation of epigallocatechin gallate and piperine into a zein nanocarrier: Implication on antioxidant and anticancer potential. Advances in Natural Sciences: Nanoscience and Nanotechnology., 9(3), 035011.

    ADS  Google Scholar 

  96. Magoshi, J., Nakamura, S., & Murakami, K. I. (1992). Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. Journal of Applied Polymer Science., 45(11), 2043–8.

    CAS  Google Scholar 

  97. Laha, A., Yadav, S., Majumdar, S., & Sharma, C. S. (2016). In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochemical Engineering Journal., 105, 481–488.

    CAS  Google Scholar 

  98. Ullah, S., Hashmi, M., Khan, M. Q., Kharaghani, D., Saito, Y., Yamamoto, T., et al. (2019). Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing. RSC Advances., 9(1), 268–277.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang, S. B., Rabbani, M. M., Ji, B. C., Han, D.-W., Lee, J. S., Kim, J. W., et al. (2016). Optimum conditions for the fabrication of zein/Ag composite nanoparticles from ethanol/H2O co-solvents using electrospinning. Nanomaterials, 6(12), 230.

    PubMed  PubMed Central  Google Scholar 

  100. Fish, P. (1971). Electron diffraction and the Bragg equation. Physics Education., 6(1), 7.

    ADS  CAS  Google Scholar 

  101. Liu, H., Yang, F.-C., Tsai, Y.-J., Wang, X., Li, W., & Chang, C.-L. (2019). Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering. Surface and Coatings Technology, 358, 577–585.

    CAS  Google Scholar 

  102. Subramanian, R., Sathish, S., Murugan, P., Musthafa, A. M., & Elango, M. (2019). Effect of piperine on size, shape and morphology of hydroxyapatite nanoparticles synthesized by the chemical precipitation method. Journal of King Saud University-Science, 31(4), 667–673.

    Google Scholar 

  103. Miri, M. A. (2017). Zein electrospun nanofibers as nanocarrier of vitamin C: Characterisation and kinetic stability study. Dissertation, ferdowsi university mashhad Iran.

  104. Wu Q, Yoshino T, Sakabe H, Zhang H, Isobe S. (2003). Chemical modification of zein by bifunctional polycaprolactone (PCL). Polymer., 44(14):3909-19.

    CAS  Google Scholar 

  105. Li, Y., Lim, L. T., & Kakuda, Y. (2009). Electrospun zein fibers as carriers to stabilize (−)-epigallocatechin gallate. Journal of Food Science., 74(3), C233–C240.

    CAS  PubMed  Google Scholar 

  106. Biduski, B., Kringel, D. H., Colussi, R., dos Santos Hackbart, H. C., Lim, L.-T., Dias, A. R. G., et al. (2019). Electrosprayed octenyl succinic anhydride starch capsules for rosemary essential oil encapsulation. International Journal of Biological Macromolecules., 132, 300–307.

    CAS  PubMed  Google Scholar 

  107. Shirmohammadli, F., Nikzad, M., Ghoreyshi, A. A., Mohammadi, M., & Poureini, F. (2021). Preparation and characterization of zein/sodium caseinate/xanthan gum complex for encapsulation of piperine and its in vitro release study. Food Biophysics., 16, 254–269.

    Google Scholar 

  108. Yassen, A. T., Khudair, K. K., & Hassan, M. A. M. (2022). Piperine loaded titanium dioxide nanoparticles: Development, characterisation and biomedical application. Nano Biomedicine and Engineering., 14(2), 192–200.

    CAS  Google Scholar 

  109. Alves, F. S., Cruz, J. N., de Farias Ramos, I. N., do Nascimento Brandão, D. L., Queiroz, R. N., da Silva, G. V., et al. (2022). Evaluation of antimicrobial activity and cytotoxicity effects of extracts of piper nigrum L. and piperine. Separations, 10(1), 21.

    Google Scholar 

  110. Haq, I. U., Imran, M., Nadeem, M., Tufail, T., Gondal, T. A., & Mubarak, M. S. (2021). Piperine: A review of its biological effects. Phytotherapy Research., 35(2), 680–700.

    CAS  PubMed  Google Scholar 

  111. Fereydouni, N., Movaffagh, J., Amiri, N., Darroudi, S., Gholoobi, A., Goodarzi, A., et al. (2021). Synthesis of nano-fibers containing nano-curcumin in zein corn protein and its physicochemical and biological characteristics. Scientific Reports, 11(1), 1902.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Peck, K. R., Kim, S. W., Jung, S.-I., Kim, Y.-S., Oh, W. S., Lee, J. Y., et al. (2003). Antimicrobials as potential adjunctive agents in the treatment of biofilm infection with Staphylococcus epidermidis. Chemotherapy, 49(4), 189–193.

    CAS  PubMed  Google Scholar 

  113. Song, Y.-H., & Jones, M. N. (1994). The interaction of positively charged phospholipid vesicles with bacteria. Portland Press Ltd.

    Google Scholar 

  114. Umadevi, P., Deepti, K., & Venugopal, D. V. (2013). Synthesis, anticancer and antibacterial activities of piperine analogs. Medicinal Chemistry Research., 22, 5466–5471.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Zabol for its support in implementing the project.

Funding

This work was financially supported by Zabol University of Medical Sciences (IR.ZBMU.REC.1401.074) (https://ethics.research.ac.ir/ProposalCertificateEn.php?id=290724&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true) (https://ethics.research.ac.ir/ProposalCertificateEn.php?id=290724&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true). This work also received support from a grant offered by the University of Zabol (IR-UOZ-GR-4249).

Author information

Authors and Affiliations

Authors

Contributions

SD contributed to the conception of the work, conducting the study, revising the draft, approving the final version of the manuscript, and agreed on all aspects of the work. OSh contributed to data analysis, the drafting and revising of the draft, approval of the final version of the manuscript, and agreed on all aspects of the work. HH contributed to the conception of the work, approval of the final version of the manuscript, and agreed for all aspects of the work. FR contributed to data analysis, approval of the final version of the manuscript, and agreed for all aspects of the work. MAM contributed to the conception of the work, drafting and revising the draft, data analysis, approval of the final version of the manuscript, and agreed on all aspects of the work.

Corresponding author

Correspondence to Mohammad Amin Miri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

None.

Research involving humans and animals statement

All animal experiments were authorized by the Ethics Committee Acts of Zabol University of Medical Sciences and conducted in accordance with their guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshmand, S., Shahraki, O., Hosseynipour, H. et al. Piperine-Loaded Zein Electrospun Nanofibers: Development, Characterization and Antibacterial Application. BioNanoSci. 14, 11–26 (2024). https://doi.org/10.1007/s12668-023-01246-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01246-3

Keywords

Navigation