Skip to main content

Advertisement

Log in

rGO-ZnO Nanowire Deposited Filamentous Seaweed Nanofibrous Cellulose for Paper Supercapacitor

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

A nanosized architectural (a spider’s web) structure of cellulose (Iα) was extracted from green seaweed Chaetomorpha antennina through bleaching treatment. Furthermore, reduced graphene oxide (rGO) and zinc oxide (ZnO) nanowires were deposited over seaweed cellulose while using a simple hydrothermal method. A simple press method was used to prepare rGO-ZnO seaweed cellulose nanocomposite for the paper supercapacitor. This rGO-ZnO seaweed cellulose paper anode material was characterized by using various analytical techniques such as FT-IR, SEM, TGA, XRD, and tensile tests. XRD peaks reveal that graphene oxide powder when mixed with seaweed cellulose got reduced and gave XRD peak of reduced graphene oxide (rGO). In this paper, supercapacitors were tested in CV, GCD, and EIS. From GCD, the specific energy density of the ZnO-cellulose paper device is found to be 0.00066 Wh/kg whereas, for the rGO-ZnO cellulose, paper device gives a greater energy density of 5.21 Wh/kg. From EIS, the series resistance of ZnO-cellulose is found as 326 Ω and for ZnO-rGO-cellulose as 2.16 Ω. This marine resources based rGO-ZnO seaweed cellulose paper supercapacitor has application in various energy storage domains including electric vehicles and electronic industries as it is bio-degradable, cost-effective, thinnest, bearing high performance, and safe for getting used.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the articels.

References

  1. Sultana, M.A. Wahab, M. Nahiduzzaman, M. Mohiuddin, M.Z. Iqbal, A. Shakil, A. Al Manun , M.S.R. Khan, L. Wong, M. Asaduzzaman (2022). Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: a review. Aquaculture and Fisheries (2022)

  2. A. K. Siddhanta, M.U. Chhatbar, G.K. Mehta, N.D. Sanandiya, S. Kumar, M.D. Oza, P. Kamlesh, R. Meena The cellulose contents of Indian seaweeds. Journal of applied phycology, 23(5) (2011) 919–923

  3. Bhutiya, P. L., Misra, N., Rasheed, M. A., & Hasan, S. Z. (2018). Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity. International journal of biological macromolecules., 117, 435–444.

    Article  Google Scholar 

  4. Missoum, K., & Belgacem, M. N. (2013). J. Bras. Nanofibrillated cellulose surface modification: A review. Materials, 6(5), 1745–1766.

    Google Scholar 

  5. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994.

    Article  Google Scholar 

  6. Mihranyan, A. (2011). Cellulose from cladophorales green algae: From environmental problem to high-tech composite materials. Journal of Applied Polymer Science, 119(4), 2449–2460.

    Article  Google Scholar 

  7. Gustafsson, S., Lordat, P., Hanrieder, T., Asper, M., Schaefer, O., & Mihranyan, A. (2016). Mille-feuille paper: a novel type of filter architecture for advanced virus separation applications. Materials Horizons, 3(4), 320–327.

    Article  Google Scholar 

  8. Bhutiya, P. L., Misra, N., Rasheed, M. A., & Hasan, S. Z. (2020). Silver nanoparticles deposited algal nanofibrous cellulose sheet for antibacterial activity. BioNanoScience, 10(1), 23–33.

    Article  Google Scholar 

  9. Durairaj, A., Maruthapandi, M., Saravanan, A., Luong, J. H., & Gedanken, A. (2020). Cellulose nanocrystals (CNC)-based functional materials for supercapacitor applications. Nanomaterials, 12(11), 1828.

    Article  Google Scholar 

  10. Jiang, L., Han, S. O., Pirie, M., Kim, H. N., Seong, Y. H., Kim, H., & Foord, J. S. (2021). Seaweed biomass waste-derived carbon as an electrode material for supercapacitor. Energy & Environment, 32(6), 1117–1129.

    Article  Google Scholar 

  11. Jose, J., Thomas, V., Vinod, V., Abraham, R., & Abraham, S. (2019). Nanocellulose based functional materials for supercapacitor applications. Journal of Science: Advanced Materials and Devices, 4(3), 333–340.

    Google Scholar 

  12. Tafete, G. A., Abera, M. K., & Thothadri, G. (2022). Review on nanocellulose-based materials for supercapacitors applications. Journal of Energy Storage, 48(2022), 103938.

    Article  Google Scholar 

  13. Wang, Z., Tammela, P., Strømme, M., & Nyholm, L. (2017). Cellulose-based supercapacitors: Material and performance considerations. Advanced Energy Materials, 7(18), 1700130.

    Article  Google Scholar 

  14. Rabani, I., Yoo, J., Bathula, C., Hussain, S., & Seo, Y. S. (2021). The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors. Journal of Materials Chemistry A, 9(19), 11580–11594.

    Article  Google Scholar 

  15. Hussain, S. Z., Ihrar, M., Hussain, S. B., Oh, W. C., & Ullah, K. (2020). A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes. SN Applied Sciences, 2(4), 1–23.

    Article  Google Scholar 

  16. Abdah, M. A. A. M., Azman, N. H. M., Kulandaivalu, S., & Sulaiman, Y. Y. (2020). Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Materials & Design, 186, 108199.

    Article  Google Scholar 

  17. Zhou, S., Kong, X., Zheng, B., Huo, F., Strømme, M., & Xu, C. (2019). Cellulose nanofiber@ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano, 13(8), 9578–9586.

    Article  Google Scholar 

  18. Etana, B. B., Ramakrishnan, S., Dhakshnamoorthy, M., Saravanan, S., Ramamurthy, P. C., & Demissie, T. A. (2020). Functionalization of textile cotton fabric with reduced graphene oxide/MnO2/polyaniline based electrode for supercapacitor. Materials Research Express, 6(12), 125708.

    Article  Google Scholar 

  19. Wang, K., Gao, S., Du, Z., Yuan, A., Lu, W., & Chen, L. (2016). MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance. Journal of Power Sources, 305, 30–36.

    Article  Google Scholar 

  20. Saranya, M., Ramachandran, R., & Wang, F. (2016). Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. Journal of Science: Advanced Materials and Devices, 1(4), 454–460.

    Google Scholar 

  21. Xiang, Z., Gao, W., Chen, L., Lan, W., Zhu, J. Y., & Runge, T. (2016). A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose, 23(1), 493–503.

    Article  Google Scholar 

  22. Bhutiya, P. L., Mahajan, M. S., Rasheed, M. A., Pandey, M., Hasan, S. Z., & Misra, N. (2018). Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity. International journal of biological macromolecules, 112, 1264–1271.

    Article  Google Scholar 

  23. Chauhan, I., Aggrawal, S., & Mohanty, P. (2015). ZnO nanowire-immobilized paper matrices for visible light-induced antibacterial activity against Escherichia coli. Environmental Science: Nano, 2(3), 273–279.

    Google Scholar 

  24. Kuzmenko, V., Wang, N., Haque, M., Naboka, O., Flygare, M., Svensson, K., Gatenholm, P., Liu, J., & Enoksson, P. (2017). Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors. RSC advances, 7(73), 45968–45977.

    Article  Google Scholar 

  25. Zhou, S., Kong, X., Zheng, B., Huo, F., Strømme, M., & Xu, C. (2019). Cellulose nanofiber@ conductive metal–organic frameworks for high-performance flexible supercapacitors. Acs Nano, 13(8), 9578–9586.

    Article  Google Scholar 

  26. Liu, G., Wang, L., Wang, B., Gao, T., & Wang, D. (2015). A reduced graphene oxide modified metallic cobalt composite with superior electrochemical performance for supercapacitors. RSC Advances, 5(78), 63553–63560.

    Article  Google Scholar 

  27. Liewhiran, C., Seraphin, S. A., & S. (2006). Phanichphant Synthesis of nano-sized ZnO powders by thermal decomposition of zinc acetate using Broussonetia papyrifera(L.) Vent pulp as a dispersant. Current Applied Physics, 6(3), 499–502.

    Article  Google Scholar 

  28. Johra, F. T., & Jung, W. G. (2015). Hydrothermally reduced graphene oxide as a supercapacitor. Applied Surface Science, 357, 1911–1914.

    Article  Google Scholar 

  29. Reddy, K. O., Maheswari, C. U., & Shukla, M. (2013). Physico-chemical characterization of cellulose extracted from ficus leaves. Journal of Biobased Materials and Bioenergy, 7(4), 496–499.

    Article  Google Scholar 

  30. Gong, Y., Li, D., Fu, Q., & Pan, C. (2015). Influence of graphene microstructures on electrochemical performance for supercapacitors. Progress in Natural Science: Materials International, 25(5), 379–385.

    Article  Google Scholar 

  31. Kumar, R., Singh, R., Gurjar, A., Kashyap, R., Kumar, M., & Kumar, D. (2019). Study the thermal stability of functionalized graphene oxide. In AIP Conference Proceedings, AIP Publishing LLC, 2142(1), 040015.

    Article  Google Scholar 

  32. Cui, P., Lee, J., Hwang, E., & Lee, H. (2011). One-pot reduction of graphene oxide at subzero temperatures. Chemical Communications, 47(45), 12370–12372.

    Article  Google Scholar 

  33. Magar, H. S., Hassan, R. Y., & Mulchandani, A. (2021). Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors, 21(19), 6578.

    Article  Google Scholar 

  34. Wan, C., Jiao, Y., & Li, J. (2017). Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A, 5(8), 3819–3831.

    Article  Google Scholar 

  35. Ikram, M., Haider, A., Bibi, S. T., Ul-Hamid, A., Haider, J., Shahzadi, I., Nabgan, W., Moeen, S., Ali, S., Goumri-Said, S., & Kanoun, M. B. (2022). Synthesis of Al/starch co-doped in CaO nanoparticles for enhanced catalytic and antimicrobial activities: Experimental and DFT approaches. RSC advances, 12(50), 32142–32155.

    Article  Google Scholar 

  36. I.Shahzadi, M. Islam, H. Saeed, A. Shahzadi, J. Haider, A. Haider, M. Imran, H.A. Rathore, A. Ul-Hamid, W. Nabgan, M. Ikram. Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation. International Journal of Biological Macromolecules (2023) 123874.

  37. Shahzadi, I., Islam, M., Saeed, H., Haider, A., Shahzadi, A., Haider, J., Ahmed, N., Ul-Hamid, A., Nabgan, W. M., & Ikram, H. A. (2022). Rathore. Formation of biocompatible MgO/cellulose grafted hydrogel for efficient bactericidal and controlled release of doxorubicin. International Journal of Biological Macromolecules, 220, 1277–1286.

    Article  Google Scholar 

  38. Ikram, M., Haider, A., Imran, M., Haider, J., Naz, S., Ul-Hamid, A., Shahzadi, A., Moeen, S., Nazir, G., Nabgan, W., & Bashir, A. (2023). Cellulose grafted poly acrylic acid doped manganese oxide nanorods as novel platform for catalytic, antibacterial activity and molecular docking analysis. Surfaces and Interfaces, 37, 102710.

    Article  Google Scholar 

  39. I.Shahzadi, M.Islam, H. Saeed, A. Shahzadi, J. Haider, A. Haider, M. Imran, H.A. Rathore, A. Ul-Hamid, W. Nabgan, Ikram, M. Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation. International Journal of Biological Macromolecules (2023) 123874.

  40. M. Ikram, A., Haider, M. Imran, J.Haider, S.Naz, A. Ul-Hamid, A. Shahzadi, K. Ghazanfar, W. Nabgan, S. Moeen, S. Ali. Assessment of catalytic, antimicrobial and molecular docking analysis of starch-grafted polyacrylic acid doped BaO nanoparticles. International Journal of Biological Macromolecules (2023) 123190.

Download references

Acknowledgements

Dr. Priyank L. Bhutiya thanks GERMI Director General Dr. Biswajit Roy for providing all facilities and continuous support as well as also acknowledging SRDC-PDEU for instrumental analyses. Mr. Bharat Odedara is also acknowledged for his support in the collection of seaweed. Dr. Mitesh Solanki has high acknowledgement for data interpretation.

Funding

This work was carried out independently without any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

P.B., B.T., and Z.H. designed the experiment as well as wrote the manuscript. R.K. and Y.S. were done supercapacitor device analysis. A.R. and P.R. monitored the experiment.

Corresponding authors

Correspondence to Priyank L. Bhutiya or Brijesh Tripathi.

Ethics declarations

Involving Humans and Animals and Informed Consent

This research does not contain any studies with human and animal subjects performed by any of the authors.

Competing Interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 67 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhutiya, P.L., Kapadiya, R., Tripathi, B. et al. rGO-ZnO Nanowire Deposited Filamentous Seaweed Nanofibrous Cellulose for Paper Supercapacitor. BioNanoSci. 13, 588–599 (2023). https://doi.org/10.1007/s12668-023-01101-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01101-5

Keywords

Navigation