Skip to main content

Advertisement

Log in

Microwave-Assisted Biosynthesized Gold Nanoparticles Using Saussurea obvallata: Biocompatibility and Antioxidant Activity Assessment

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nanoparticles play a significant role in the development of pharmaceuticals. In the present study, gold nanoparticles (AuNPs) were synthesized using the microwave irradiation method and evaluated their cytocompatibility and antioxidant properties. Saussurea obvallata plant extract was used as a reducing agent to prepare AuNPs. The UV–visible spectra confirmed the formation of AuNPs with the surface plasmon resonance peak at 530 nm. Fourier transform infrared spectroscopy demonstrates that AuNPs were blended with different functional groups, including hydroxyl, amine, and alkyl halide. The scanning electron microscopy and transmission electron microscopy results indicate that AuNPs are spherical in size. The XRD analysis provides evidence for the existence of the AuNPs, which are coherent with standard AuNPs. The synthesized AuNPs showed excellent biocompatibility with IMR-32 cells up to 500 μg/mL concentration. Furthermore, the biosynthesized AuNPs exhibited enhanced antioxidative activity at 1000 μg/mL concentration. Hence, the developed AuNPs would have a potential biological application in the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arif, R., & Uddin, R. (2021). A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Medical Devices & Sensors, 4(1), e10158.

    Article  Google Scholar 

  2. Prasad R (2019) Nanotechnology in the life science. Springer Nature Switzerland

  3. Schröfel, A., Kratošová, G., Šafařík, I., Šafaříková, M., Raška, I., & Shor, L. M. (2014). Applications of biosynthesized metallic nanoparticles–A review. Acta Biomaterialia, 10(10), 4023–4042.

    Article  Google Scholar 

  4. Ojo, O. A., Olayide, I. I., Akalabu, M. C., Ajiboye, B., Ojo, A., Oyinloye, B., & Ramalingam, M. (2021). Nanoparticles and their biomedical applications. Biointerface Res Appl Chem, 11, 8431–8445.

    Google Scholar 

  5. Lateef, A., Ojo, S. A., Elegbede, J. A., Azeez, M. A., Yekeen, T. A., & Akinboro, A. (2017). Evaluation of some biosynthesized silver nanoparticles for biomedical applications: Hydrogen peroxide scavenging, anticoagulant and thrombolytic activities. Journal of Cluster Science, 28(3), 1379–1392.

    Article  Google Scholar 

  6. Yew, Y. P., Shameli, K., Miyake, M., Khairudin, N. B. B. A., Mohamad, S. E. B., Naiki, T., & Lee, K. X. (2020). Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arabian J Chem, 13(1), 2287–2308.

    Article  Google Scholar 

  7. Bansal, S. A., Kumar, V., Karimi, J., Singh, A. P., & Kumar, S. (2020). Role of gold nanoparticles in advanced biomedical applications. Nanoscale Advances, 2(9), 3764–3787.

    Article  Google Scholar 

  8. Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A (2021) Biomedical applications of functionalized gold nanoparticles: A review. J Cluster Sci:1–16

  9. Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., Aguilar, Z. P., Rodgers, H., Hamilton, W., Marutharaj, T., & Webb, C. (2014). Gold nanoparticles: Various methods of synthesis and antibacterial applications. Frontiers in Bioscience, 19(8), 1320–1344.

    Article  Google Scholar 

  10. Ielo, I., Rando, G., Giacobello, F., Sfameni, S., Castellano, A., Galletta, M., Drommi, D., Rosace, G., & Plutino, M. R. (2021). Synthesis, chemical–physical characterization, and biomedical applications of functional gold nanoparticles: A review. Molecules, 26(19), 5823.

    Article  Google Scholar 

  11. Mulikova, T., Abduraimova, A., Molkenova, A., Em, S., Duisenbayeva, B., Han, D.-W., & Atabaev, T. S. (2021). Mesoporous silica decorated with gold nanoparticles as a promising nanoprobe for effective CT X-ray attenuation and potential drug delivery. Nano-Structures & Nano-Objects, 26, 100712.

    Article  Google Scholar 

  12. Zhao, S., Luo, Y., Chang, Z., Liu, C., Li, T., Gan, L., Huang, Y., & Sun, Q. (2021). BSA-coated gold nanorods for NIR-II photothermal therapy. Nanoscale Research Letters, 16(1), 1–11.

    Article  Google Scholar 

  13. Elia, P., Zach, R., Hazan, S., Kolusheva, S., Ze, P., & Zeiri, Y. (2014). Green synthesis of gold nanoparticles using plant extracts as reducing agents. International Journal of Nanomedicine, 9, 4007.

    Google Scholar 

  14. Panda, T., & Deepa, K. (2011). Biosynthesis of gold nanoparticles. Journal of Nanoscience and Nanotechnology, 11(12), 10279–10294.

    Article  Google Scholar 

  15. Rao, K. J., & Paria, S. (2014). Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and their application for thiamine detection. RSC Advances, 4(54), 28645–28652.

    Article  Google Scholar 

  16. Geetha, R., Ashokkumar, T., Tamilselvan, S., Govindaraju, K., Sadiq, M., & Singaravelu, G. (2013). Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnology, 4(4), 91–98.

    Article  Google Scholar 

  17. Saifuddin, N., Wong, C., & Yasumira, A. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry, 6(1), 61–70.

    Google Scholar 

  18. Annamalai, J., & Nallamuthu, T. (2015). Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Applied Nanoscience, 5(5), 603–607.

    Article  Google Scholar 

  19. Rajathi, F. A. A., Parthiban, C., Kumar, V. G., & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta Mol Biomol Spectrosc, 99, 166–173.

    Article  Google Scholar 

  20. Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537–556.

    Article  Google Scholar 

  21. Liu, X.-Y., Wang, J.-Q., Ashby, C. R., Jr., Zeng, L., Fan, Y.-F., & Chen, Z.-S. (2021). Gold nanoparticles: Synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discovery Today, 26(5), 1284–1292.

    Article  Google Scholar 

  22. Mandhata CP, Sahoo CR, Padhy RN (2022) Biomedical applications of biosynthesized gold nanoparticles from cyanobacteria: An overview. Biol Trace Elem Res:1–21

  23. Kamal, B. (2013). Brahma Kamal-The spiritually revered, scientifically ignored medicinal plant. Current Science, 104(6), 685.

    Google Scholar 

  24. Semwal, P., & Painuli, S. (2019). Antioxidant, antimicrobial, and GC-MS profiling of Saussurea obvallata (Brahma Kamal) from Uttarakhand Himalaya. Clinical Phytoscience, 5(1), 12.

    Article  Google Scholar 

  25. Ahmed, S., & Ikram, S. (2016). Biosynthesis of gold nanoparticles: A green approach. Journal of Photochemistry and Photobiology, B: Biology, 161, 141–153.

    Article  Google Scholar 

  26. Noruzi, M. (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosystems Engineering, 38(1), 1–14.

    Article  Google Scholar 

  27. Franco-Romano, M., Gil, M., Palacios-Santander, J., Delgado-Jaén, J., Naranjo-Rodríguez, I., De Cisneros, J.H.-H., & Cubillana-Aguilera, L. (2014). Sonosynthesis of gold nanoparticles from a geranium leaf extract. Ultrasonics Sonochemistry, 21(4), 1570–1577.

    Article  Google Scholar 

  28. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2005). Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 17(3), 566–572.

    Article  Google Scholar 

  29. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., & He, N. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104.

    Article  Google Scholar 

  30. Anuradha, J., Abbasi, T., & Abbasi, S. (2010). Green’synthesis of gold nanoparticles with aqueous extracts of neem (Azadirachta indica). Research Journal of Biotechnology, 5(1), 75–79.

    Google Scholar 

  31. Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology Progress, 22(2), 577–583.

    Article  Google Scholar 

  32. Ankamwar, B., Chaudhary, M., & Sastry, M. (2005). Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 35(1), 19–26.

    Article  Google Scholar 

  33. Ankamwar, B. (2010). Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-Journal of Chemistry, 7(4), 1334–1339.

    Article  Google Scholar 

  34. Nagalingam, M., Kalpana, V., & Panneerselvam, A. (2018). Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnology Reports, 19, e00268.

    Article  Google Scholar 

  35. Ankamwar, B., Damle, C., Ahmad, A., & Sastry, M. (2005). Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. Journal of Nanoscience and Nanotechnology, 5(10), 1665–1671.

    Article  Google Scholar 

  36. El-Naggar, M. E., Shaheen, T. I., Fouda, M. M., & Hebeish, A. A. (2016). Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core–shell silver–gold nanoparticles. Carbohydrate Polymers, 136, 1128–1136.

    Article  Google Scholar 

  37. Bhuvanasree, S., Harini, D., Rajaram, A., & Rajaram, R. (2013). Rapid synthesis of gold nanoparticles with Cissus quadrangularis extract using microwave irradiation. Spectrochim Acta Mol Biomol Spectrosc, 106, 190–196.

    Article  Google Scholar 

  38. Roy, A., & Mohanta, B. (2019). Microwave-assisted green synthesis of gold nanoparticles and its catalytic activity. International Journal of Nano Dimension, 10(4), 359–367.

    Google Scholar 

  39. Balalakshmi, C., Gopinath, K., Govindarajan, M., Lokesh, R., Arumugam, A., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Benelli, G. (2017). Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii. Journal of Photochemistry and Photobiology, B: Biology, 173, 598–605.

    Article  Google Scholar 

  40. Wali, M., Sajjad, A., & Sumaira, S. (2017). Green synthesis of gold nanoparticles and their characterizations using plant extract of Papaver somniferum. Nano Science and Nano Technology, 11(2), 118.

    Google Scholar 

  41. Semwal, P., Anthwal, P., Kapoor, T., & Thapliyal, A. (2014). Preliminary investigation of phytochemicals of Saussurea obvallata (Brahm Kamal) and Pittosporum eriocarpum (Agni): Two endangered medicinal plant species of Uttarakhand. International Journal of Pharmaceutics, 1(4), 266–269.

    Google Scholar 

  42. Annamalai, A., Babu, S. T., Jose, N. A., Sudha, D., & Lyza, C. V. (2011). Biosynthesis and characterization of silver and gold nanoparticles using aqueous leaf extraction of Phyllanthus amarus Schum & Thonn. World Applied Sciences Journal, 13(8), 1833–1840.

    Google Scholar 

  43. Venkatesan, J., Manivasagan, P., Kim, S.-K., Kirthi, A. V., Marimuthu, S., & Rahuman, A. A. (2014). Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosystems Engineering, 37(8), 1591–1597.

    Article  Google Scholar 

  44. Correa S, Naranjo A, Herrera A Biosynthesis and characterization of gold nanoparticles using extracts of Tamarindus indica L leaves. In: Journal of Physics: Conference Series, 2016. vol 1. IOP Publishing, p 012082

  45. Sathishkumar, G., Jha, P. K., Vignesh, V., Rajkuberan, C., Jeyaraj, M., Selvakumar, M., Jha, R., & Sivaramakrishnan, S. (2016). Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. Journal of Molecular Liquids, 215, 229–236.

    Article  Google Scholar 

  46. Sunkari, S., Gangapuram, B. R., Dadigala, R., Bandi, R., Alle, M., & Guttena, V. (2017). Microwave-irradiated green synthesis of gold nanoparticles for catalytic and antibacterial activity. Journal of Analytical Science and Technology, 8(1), 13.

    Article  Google Scholar 

  47. Gutiérrez-Wing, C., Esparza, R., Vargas-Hernández, C., García, M. F., & José-Yacamán, M. (2012). Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. Nanoscale, 4(7), 2281–2287.

    Article  Google Scholar 

  48. Quach, Q., Biehler, E., Elzamzami, A., Huff, C., Long, J. M., & Abdel-Fattah, T. M. (2021). Catalytic activity of beta-cyclodextrin-gold nanoparticles network in hydrogen evolution reaction. Catalysts, 11(1), 118.

    Article  Google Scholar 

  49. Devi, L., Gupta, R., Jain, S. K., Singh, S., & Kesharwani, P. (2020). Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. Journal of Drug Delivery Science and Technology, 56, 101565.

    Article  Google Scholar 

  50. Kumar, S., Sharma, S., & Das, P. (2016). Supported gold nanoparticles-catalyzed microwave-assisted hydration of nitriles to amides under base-free conditions. Advanced Synthesis & Catalysis, 358(18), 2889–2894.

    Article  Google Scholar 

  51. Muthuvel, A., Adavallan, K., Balamurugan, K., & Krishnakumar, N. (2014). Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomedicine & Preventive Nutrition, 4(2), 325–332.

    Article  Google Scholar 

  52. Izadiyan, Z., Shameli, K., Hara, H., & Taib, S. H. M. (2018). Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract. Journal of Molecular Structure, 1151, 97–105.

    Article  Google Scholar 

  53. Singh, S., Vidyarthi, A. S., Nigam, V. K., & Dev, A. (2014). Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis. Artificial Cells Nanomedicine Biotechnology, 42(1), 6–12.

    Article  Google Scholar 

  54. Namvar, F., Azizi, S., Ahmad, M. B., Shameli, K., Mohamad, R., Mahdavi, M., & Tahir, P. M. (2015). Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Research on Chemical Intermediates, 41(8), 5723–5730.

    Article  Google Scholar 

  55. Lunardi, C. N., Barros, M. P., Rodrigues, M. L., & Gomes, A. J. (2018). Synthesis of gold nanoparticles using Euphorbia tirucalli latex and the microwave method. Gold Bulletin, 51(4), 131–137.

    Article  Google Scholar 

  56. Eskandari-Nojehdehi, M., Jafarizadeh-Malmiri, H., & Jafarizad, A. (2018). Microwave accelerated green synthesis of gold nanoparticles using gum Arabic and their physico-chemical properties assessments. Zeitschrift für Physikalische Chemie, 232(3), 325–343.

    Article  Google Scholar 

  57. Khusro A, Aarti C, Agastian P (2020) Microwave irradiation-based synthesis of anisotropic gold nanoplates using Staphylococcus hominis as reductant and its optimization for therapeutic applications. J Environ Chem Eng:104526

  58. Chen, M. N., Chan, C. F., Huang, S. L., & Lin, Y. S. (2019). Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles’ antibacterial properties. Journal of the Science of Food and Agriculture, 99(7), 3693–3702.

    Article  Google Scholar 

  59. Francis, S., Koshy, E., & Mathew, B. (2018). Microwave aided synthesis of silver and gold nanoparticles and their antioxidant, antimicrobial and catalytic potentials. Journal of Nanostructures, 8(1), 55–66.

    Google Scholar 

  60. Valsalam, S., Agastian, P., Esmail, G. A., Ghilan, A.-K.M., Al-Dhabi, N. A., & Arasu, M. V. (2019). Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. Journal of Photochemistry and Photobiology, B: Biology, 201, 111670.

    Article  Google Scholar 

  61. Hassanisaadi, M., Bonjar, G. H. S., Rahdar, A., Pandey, S., Hosseinipour, A., & Abdolshahi, R. (2021). Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials, 11(8), 2033.

    Article  Google Scholar 

  62. Abdelrazek, E. M., Abdelghany, A. M., Badr, S. I., & Morsi, M. A. (2018). Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. Journal of materials research and technology, 7(4), 419–431.

    Article  Google Scholar 

  63. Semwal, P., & Painuli, S. (2019). Antioxidant, antimicrobial, and GC-MS profiling of Saussurea obvallata (Brahma Kamal) from Uttarakhand Himalaya. Clinical Phytoscience, 5(1), 1–11.

    Article  Google Scholar 

  64. El-Borady OM, Fawzy M, Hosny M (2021) Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common reed leaf extract. Appl Nanosci:1–12

  65. Vijayan, R., Joseph, S., & Mathew, B. (2018). Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities. IET nanobiotechnology, 12(6), 850–856.

    Article  Google Scholar 

  66. Babu, P. J., Sharma, P., Kalita, M. C., & Bora, U. (2011). Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract. Frontiers of Materials Science, 5(4), 379–387.

    Article  Google Scholar 

  67. Pourhassan-Moghaddam, M., Zarghami, N., Mohsenifar, A., Rahmati-Yamchi, M., Gholizadeh, D., Akbarzadeh, A., De La Guardia, M., & Nejati-Koshki, K. (2014). Watercress-based gold nanoparticles: Biosynthesis, mechanism of formation and study of their biocompatibility in vitro. Micro & Nano Letters, 9(5), 345–350.

    Article  Google Scholar 

Download references

Funding

The Basic Science Research Program supported this research through the National Research Foundation of Korea (2018R1A6A1A03024231 and 2021R1A2C1003566). In addition, this work is also supported by the seed grant from Yenepoya (Deemed to be University) (YU/seed grant/073-2018).

Author information

Authors and Affiliations

Authors

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Biosynthesis of gold nanoparticles (AuNPs) was performed using microwave irradiation and Saussurea obvallata.

• Rapid formation for gold nanoparticles was formed in less than a minute.

• Saussurea obvallata was used as a reducing agent in the preparation of AuNPs.

• Different analytical techniques including FT-IR, SEM–EDX, TEM, XRD and UV, were utilized to confirm AuNP formation.

• Biocompatibility and antioxidant property of biosynthesized AuNPs were checked with IMR-32 neuroblastoma cells and DPPH assay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalavi, P.A., V., A.J., Thomas, S. et al. Microwave-Assisted Biosynthesized Gold Nanoparticles Using Saussurea obvallata: Biocompatibility and Antioxidant Activity Assessment. BioNanoSci. 12, 741–751 (2022). https://doi.org/10.1007/s12668-022-00994-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00994-y

Keywords

Navigation