Skip to main content

Advertisement

Log in

A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs) are one of the prominent metal oxide nanoparticles with significant applications in many industries and research institutes. Various methods of synthesis have been adopted in the production of ZnO NPs so as to meet its high demand. The environmental implications and economic challenges attached to most of the means of ZnO NPs synthesis have resulted in the quest for other alternatives with environmental and economic benefits. Interestingly, the biological method of synthesis using plant sources have been found appropriate for the production of ZnO NPs dues to its numerous health, environmental, economic, and medicinal benefits. The distinctive features of ZnO NPs synthesized using plant extracts enhanced its application in agriculture for the production of fertilizers, pesticides, and fumigants. In the field of medicine and pharmacy, phytosynthesized ZnO NPs have gained remarkable usage in the production of disinfectant, antifungal, anticancer, antioxidant, anti-inflammatory and antidiabetics agents. Despite the enlisted benefits of biosynthesized ZnO NPs, the difficulties associated with the elucidation of formation mechanism and reactions still remain unraveled. This review described the summary of the recent advances in the synthesis, mechanism routes, characterization techniques, and applications of biosynthesized ZnO NPS in agriculture, medicine, and textile industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vaishali, N. S., Ratiram, G. C., Ganesh, S. B., Alok, R. R., & Harjeet, D. J. (2018). Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ -Bi2O3 microspindles. Nano-Structures & Nano-Objects, 13, 121–131.

    Google Scholar 

  2. Akintelu, S. A., Folorunso, A. S., & Ademosun, O. T. (2019). Instrumental characterization and antibacterial investigation of silver nanoparticles synthesized from Garcinia Kola leaf. Journal of Drug Delivery and Therapeutics, 9(6-s), 58–64. https://doi.org/10.22270/jddt.v9i6-s.3749.

    Article  Google Scholar 

  3. Jay, A. T., Ratiram, G. C., Nilesh, V. G., Alok, R. R., Sachin, Y., & Harjeet, D. J. (2016). Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity. Journal of Experimental Nanoscience. https://doi.org/10.1080/17458080.2016.1177216.

  4. Ginjupalli, K., Alla, R., Shaw, T., Tellapragada, C., Kumar Gupta, L., & Nagaraja Upadhya, P. (2018). Comparative evaluation of efficacy of zinc oxide and copper oxide nanoparticles as antimicrobial additives in alginate impression materials. Materials Today Proceedings, 5, 16258–16266. https://doi.org/10.1016/j.matpr.2018.05.117.

    Article  Google Scholar 

  5. Akintelu, S. A., Folorunso, A. S., Oyebamiji, A. K., & Erazua, E. A. (2019). Antibacterial potency of silver nanoparticles synthesized using Boerhaavia diffusa leaf extract as reductive and stabilizing agent. International Journal of Pharmaceutical Sciences and Research, 10(12), 374–380.

    Google Scholar 

  6. Devatha, C. P., & Thalla, A. K. (2018). Green synthesis of nanomaterials. Synthesis of inorganic nanomaterials. https://doi.org/10.1016/B978-0-08-101975-7.00007-5.

  7. Jay, A. T., Ratiram, G. C., Harjeet, D. J., Nilesh, V. G., & Alok, R. R. (2015). Histidine-capped ZnO nanoparticles: an efficient synthesis. spectral characterization and effective antibacterial activity. BioNanoSci. https://doi.org/10.1007/s12668-015-0170-0.

  8. Chen, P., Wang, H., He, M., Chen, B., Yang, B., & Hu, B. (2019). Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicology and Environmental Safety, 171, 337–346.

    Google Scholar 

  9. Khatami, M., Alijani, H. Q., Heli, H., & Sharifi, I. (2018). Rectangular shaped zinc oxide nanoparticles: green synthesis by Stevia and its biomedical efficiency. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.05.224.

  10. Amit, R., Singh, P., Haraz, F. A., & Barhoum, A. (2018). Biological synthesis of nanoparticles: An environmentally benign approach. Fundamentals of Nanoparticles. https://doi.org/10.1016/B978-0-323-51255-8.00023-9.

  11. Asghari, F., Jahanshiri, Z., Imani, M., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2016). Antifungal nanomaterials: synthesis properties and applications. Nanobiomaterials in antimicrobial therapy. https://doi.org/10.1016/B978-0-323-42864-4.00010-5.

  12. Król, A., Pomastowski, P., Rafinska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249, 37–52. https://doi.org/10.1016/j.cis.2017.07.033.

    Article  Google Scholar 

  13. Prashant, B. C., Ajay, K. P., Ganesh, S. B., Subhash, S., Dadamia, P. M. D. S., Raghvendra, K. M., & Ratiram, G. C. (2019). Green fabrication of zinc oxide nanospheres by aspidopterys cordata for effective antioxidant and antibacterial activity. Advanced Materials Letters, 10(5), 355–360.

    Google Scholar 

  14. Chouke, P. B., Potbhare, A. K., Dadure, K. M., et al.An antibacterial activity of Bauhinia racemosa assisted ZnO nanoparticles during lunar eclipse and docking assay. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.758.

  15. Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ahmad, R., & Ashraf, M. (2019). Plant-extract mediated green approach for the synthesis of ZnONPs: characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Journal of Molecular Structure, 1189, 315–327. https://doi.org/10.1016/j.molstruc.2019.04.060.

    Article  Google Scholar 

  16. Krupa, R. V. (2016). Evaluation of tetraethoxysilane (TEOS) sol-gel coat- ings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Materials Science and Engineering: C, 61, 728–735. https://doi.org/10.1016/j.msec.2016.01.013.

    Article  Google Scholar 

  17. Brintha, S. R., & Ajitha, M. (2015). Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods. IOSR Journal of Applied Chemistry, 8, 66–72. https://doi.org/10.9790/5736-081116672.

    Article  Google Scholar 

  18. Ma, H., Williams, P. L., & Diamond, S. A. (2013). Ecotoxicity of manufactured ZnO nanoparticles—a review. Environmental Pollution, 172, 76–85. https://doi.org/10.1016/j.envpol.2012.08.011.

    Article  Google Scholar 

  19. Manzoor, U., Zahra, F. T., Rafique, S., Moin, M. T., & Mujahid, M. (2015). Effect of the synthesis temperature, nucleation time and postsynthesis heat treatment of ZnO nanoparticles and its sensing properties. Journal of Nanomaterials, 2015, 1–6.

    Google Scholar 

  20. Happy, A., Venkat Kumar, S., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resource-Efficient Technologies, 3, 406–413.

    Google Scholar 

  21. Parita Basnet, T. Chanu, I., Samanta, D., Chatterjee, S. (2018). A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jpb, doi:https://doi.org/10.1016/j.jphotobiol.2018.04.036.

  22. Chandrasekaran, R., Gnanasekar, S., Seetharaman, P., Keppanan, R., Arocki-aswamy, W., & Sivaperumal, S. (2016). Formulation of Carica papaya latex-functionalized sil- ver nanoparticles for its improved antibacterial and anticancer applications. Journal of Molecular Liquids, 219, 232–238. https://doi.org/10.1016/j.molliq.2016.03.038.

    Article  Google Scholar 

  23. Bekkari, R., Laânab, L., Boyer, D., Mahiou, R., & Jaber, B. (2017). Influence of the sol gel synthesis parameters on the photoluminescence properties of ZnO nanoparticles. Materials Science in Semiconductor Processing, 71, 181–187. https://doi.org/10.1016/j.mssp.2017.07.027.

    Article  Google Scholar 

  24. Morandi, S., Fioravanti, A., Cerrato, G., Lettieri, S., Sacerdoti, M., & Carotta, M. C. (2017). Facile synthesis of ZnO nano-structures: morphology influence on electronic properties. Sensors and Actuators B: Chemical, 249, 581–589. https://doi.org/10.1016/j.snb.2017.03.114.

    Article  Google Scholar 

  25. Naveed, A., Haq, U., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. Journal of Nanomaterials, 2017, 1–14. https://doi.org/10.1155/2017/8510342.

    Article  Google Scholar 

  26. Anshuman, S., & Navendu, G. (2014). Probing the dominance of interstitial oxygen defects in ZnO nanoparticles through structural and optical characterizations. Ceramics International, 40, 14569–14578.

    Google Scholar 

  27. Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., & Hong, S. I. (2014). Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Materials Science and Engineering: C, 41, 17–27. https://doi.org/10.1016/j.msec.2014.04.025.

    Article  Google Scholar 

  28. Guldiken, B., Ozkan, G., Catalkaya, G., Ceylan, F. D., Yalcinkaya, I. E., & Capanoglu, E. (2018). Phytochemicals of herbs and spices: health versus toxicological effects. Food and Chemical Toxicology, 119, 37–49. https://doi.org/10.1037/0033-2909.I26.1.78.

    Article  Google Scholar 

  29. Anitha, R., Ramesh, K.V., Ravishankar, T.N., Sudheer Kumar, K.H., Ramakrishappa, T. Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by Artocarpus gomezianus fruit mediated facile green combustion method.

  30. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., & Lightfoot, D. (2017). Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6, 1–23. https://doi.org/10.3390/plants6040042.

    Article  Google Scholar 

  31. Abdul, H., Sivaraj, R., & Venckatesh, R. (2014). Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.- lamiaceae leaf extract. Materials Letters, 131, 16–18. https://doi.org/10.1016/j.matlet.2014.05.033.

    Article  Google Scholar 

  32. Folorunso, A. , Akintelu, S. , Oyebamiji, A. K., Ajayi, S. , Abiola, B. , Abdusalam, I., Morakinyo, A., (2019). Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata.

  33. Akintelu, S. A., & Folorunso, A. S. (2019). Biosynthesis, characterization and antifungal investigation of Ag-Cu nanoparticles from bark extracts of Garcina kola. Stem Cells, 10(4), 30–37.

    Google Scholar 

  34. Akintelu, S. A., & Folorunso, A. S. (2019). Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona muricata leaf extracts. Journal of Nanotechnology Nanomedicine & Nanobiotechnology, 6, 1–5. https://doi.org/10.24966/NTMB-2044/100022.

    Article  Google Scholar 

  35. Senthilkumar, N., NandhaKumar, E.,. Priya, P., Soni, D., Vimalan, M., Vetha, P. I. (2017). Synthesis, anti-bacterial, anti-arthritic, anti-oxidant and in-vitro cytotoxicity activities of ZnO nanoparticles using leaf extract of Tectona Grandis(L.) New Journal of Chemistry, 1–12 https://doi.org/10.1039/C7NJ02664A.

  36. Sutradhar, P., & Saha, M. (2017). Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. Journal of Experimental Nanoscience, 11, 314–327. https://doi.org/10.1080/17458080.2015.1059504.

    Article  Google Scholar 

  37. Singh, A. K., Pal, P., Gupta, V., Yadav, T. P., Gupta, V., & Singh, S. P. (2018). Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Materials Chemistry and Physics, 203, 40–48. https://doi.org/10.1016/j.matchemphys.2017.09.049.

    Article  Google Scholar 

  38. Gupta, M., Tomar, R. S., Kaushik, S., Mishra, R. K., & Sharma, D. (2018). Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Frontiers in Microbiology, 9, 1–13. https://doi.org/10.3389/fmicb.2018.02030.

    Article  Google Scholar 

  39. Singh, K., Singh, J., & Rawat, M. (2019). Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Applied Sciences, 1, 1–8. https://doi.org/10.1007/s42452-019-0610-5.

    Article  Google Scholar 

  40. Abinaya, M., Vaseeharan, B., Divya, M., Sharmili, A., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Benelli, G. (2018). Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. Journal of Trace Elements in Medicine and Biology, 45, 93–103.

    Google Scholar 

  41. Karthik, S., Suriyaprabha, R., Vinoth, M., Srither, S. R., Manivasakan, P., Rajendran, V., & Valiyaveettil, S. (2017). Larvicidal, super hydrophobic and antibacterial properties of herbal nanoparticles from Acalypha indica for biomedical applications. RSC Advances, 7, 41763–41770.

    Google Scholar 

  42. Alejandro, E., Silvio, A. M., & Rodriguez-Paez, J. E. (2019). Synthesis of ZnO nanoparticles with different morphology: Study of their antifungal effect on strains of Aspergillus niger and Botrytis cinerea. Materials Chemistry and Physics, 234, 172–184.

    Google Scholar 

  43. Mona, H., Saba, H., Kambiz, V., & Hojat, V. (2018). Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia Atlantica extract. Journal of Taiwan Institute of Chemical Engineers, 1, 1–10.

    Google Scholar 

  44. Velsankar, K., Sudhahar, S., Parvathy, G., & Kaliammal, R. (2020). Effect of cytotoxicity and antibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Materials Chemistry and Physics, 239, 121976. https://doi.org/10.1016/j.matchemphys.2019.121976.

    Article  Google Scholar 

  45. Sekar, V., Baskaralingam, V., Balasubramanian, M., & Malaikkarasu, S. (2016). Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomedicine & Pharmacotherapy, 84, 1213–1222.

    Google Scholar 

  46. Seyyed, M., Tabrizi, H. M., Behrouz, E., & Vahid, J. (2020). Biosynthesis of pure zinc oxide nanoparticles using quince seed mucilage for photocatalytic dye degradation. Journal of Alloys and Compounds, 821, 153519. https://doi.org/10.1016/j.jallcom.2019.153519.

    Article  Google Scholar 

  47. Abdullah, F. H., Abu Bakar, N. H. H., & Abu Bakar, M. (2020). Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue. Optik. https://doi.org/10.1016/j.ijleo.2020.164279.

  48. Dhandapani, K. V., Anbumani, D., Gandhi, A. D., Annamalai, P., Muthuvenkatachalam, B. S., Kavitha, P., & Ranganathan, B. (2020). Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatalysis and Agricultural Biotechnology. https://doi.org/10.1016/j.bcab.2020.101517.

  49. Ahmad, W., & Kalra, D.Green synthesis, characterization and antimicrobial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University – Science. https://doi.org/10.1016/j.jksus.2020.03.014.

  50. Agarwal, H., Menon, S., Kumar, S. V., Rajeshkumar, R., Sheba, R. D., & Lakshmi, T. (2019). Nallaswamy VD Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochemistry and Biophysics Reports, 17, 208–211. https://doi.org/10.1016/j.bbrep.2019.01.002.

    Article  Google Scholar 

  51. Tura, S., Sandeep, B. V., Sudhakar, P., & Aschalew, T. (2018). Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano, 3, 56–63. https://doi.org/10.1016/j.onano.2018.08.001.

    Article  Google Scholar 

  52. Bayrami, A., Haghgooie, S., Rahim Pouran, S., et al.Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urtica dioica extract. Advanced Powder Technology. https://doi.org/10.1016/j.apt.2020.03.004.

  53. Nurul, I. R., Hatijah, B., & Zawati, H. (2020). Zinc oxide from aloe vera extract: Two-level factorial screening of biosynthesis parameters. Heliyon, 6, e03156. https://doi.org/10.1016/j.heliyon.2020.e03156.

    Article  Google Scholar 

  54. Zheng, X., Yuhui, W., Ling, S., Arunachalam, C., Sulaiman, A. A., & Liwei, F.Anticarcinogenic effect of zinc oxide nanoparticles synthesized from Rhizoma paridis saponins on Molt-4 leukemia cells. Journal of King Saud University – Science. https://doi.org/10.1016/j.jksus.2020.01.023.

  55. Amit, S. N., & Mahima, K. (2019). Physicochemical investigations of zinc oxide nanoparticles synthesized from Azadirachta Indica (Neem) leaf extract and their interaction with Calf- Thymus DNA. Results in Physics, 13, 102168. https://doi.org/10.1016/j.rinp.2019.102168.

    Article  Google Scholar 

  56. Pragati, J., Poonam, K., & Rana, J. S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University – Science, 30, 168–175.

    Google Scholar 

  57. Sheik Mydeen, S., Raj Kumar, R., Kottaisamy, M., & Vasantha, V. S. (2020). Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. Journal of Saudi Chemical Society. https://doi.org/10.1016/j.jscs.2020.03.003.

  58. Vinayagam, R., Selvaraj, R., Pugazhendhi, A., et al. (2019). Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. Journal of Photochemistry and Photobiology, B: Biology. https://doi.org/10.1016/j.jphotobiol.2019.111760.

  59. Qing, T., Haiyan, X., Wei, L., Xinying, H., & Xiaowei, W. (2020). Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. Journal of Photochemistry and Photobiology, B: Biology, 202, 111698. https://doi.org/10.1016/j.jphotobiol.2019.111698.

    Article  Google Scholar 

  60. Wang, D., Cui, L., Chang, X., et al. (2018). Biosynthesis and characterization of zinc oxide nanoparticles from Artemisia annua and investigate their effect on proliferation, osteogenic differentiation and mineralization in human osteoblastlike MG-63 cells. Journal of Photochemistry and Photobiology, B: Biology. https://doi.org/10.1016/j.jphotobiol.2019.111652.

  61. Golmohammadi, M., Honarmand, M., & Ghanbari, S. (2019). A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. https://doi.org/10.1016/j.saa.2019.117961.

  62. Agarwal, H., Nakara, A., Menon, S., & Shanmugam, V. (2019). Eco-friendly synthesis of zinc oxide nanoparticles using Cinnamomum Tamala leaf extract and its promising effect towards the antibacterial activity. Journal of Drug Delivery Science and Technology, 53, 101212. https://doi.org/10.1016/j.jddst.2019.101212.

    Article  Google Scholar 

  63. Susan, A., Mansor, B. A., Farideh, N., & Rosfarizan, M. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters, 116, 275–277. https://doi.org/10.1016/j.matlet.2013.11.038.

    Article  Google Scholar 

  64. Abolfazl, B., Sanaz, A., Shima, R. P., Aziz, H., Alireza, K., & Ramesh, S. (2019). A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. Ultrasonics Sonochemistry, 55, 57–66. https://doi.org/10.1016/j.ultsonch.2019.03.010.

    Article  Google Scholar 

  65. Velsankar, K., Sudhahar, S., Maheshwaran, G., et al. (2018). Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. Journal of Photochemistry and Photobiology, B: Biology. https://doi.org/10.1016/j.jphotobiol.2019.111650.

  66. Basheer, A. F., Ramachandran, I., Mohamad, S. A., Sandhanasamy, D., Marimuthu, G., & Baskaralingam, V. (2020). Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: A novel drug delivery approach. Journal of Drug Delivery Science and Technology, 55, 101465. https://doi.org/10.1016/j.jddst.2019.101465.

    Article  Google Scholar 

  67. Begum, S., & Ahmaruzzaman, P. P. A. (2018). Ecofriendly bio-synthetic route to synthesize ZnO nanoparticles using Eryngium foetidum L. and their activity against pathogenic bacteria. Materials Letters. https://doi.org/10.1016/j.matlet.2018.05.091.

  68. Harish, C., Deepak, P., Pragati, K., Jangwan, J.S., Saurabh, Y. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens.

  69. Elahe, D., Danial, K., & Elham, A. (2019). Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. Journal of Molecular Liquids, 286, 110831. https://doi.org/10.1016/j.molliq.2019.04.108.

    Article  Google Scholar 

  70. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., & Praseetha, P. K. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82, 39–45. https://doi.org/10.1016/j.mssp.2018.03.017.

    Article  Google Scholar 

  71. Tamanna, B., Kavita, M., Manika, K., Ram, P., & Ajit, V. (2015). Biosynthesis of zincoxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55–61. https://doi.org/10.1016/j.mssp.2014.12.053.

    Article  Google Scholar 

  72. Kumar, M. P., Arthanareeswari, M., Devikala, S., Sridharan, M., Arockia, J., Selvi, T., & Pushpa, M. (2019). Green synthesis of zinc oxide nanoparticles using Typha latifolia. L leaf extract for photocatalytic applications. Materials Today: Proceedings, 14, 332–337.

    Google Scholar 

  73. Lu, J., Batjikh, I., Hurh, J., Han, Y., Ali, H., Mathiyalagan, R., Ling, C., Chan Ahn, J., & Yang, D. C. (2018). Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik. https://doi.org/10.1016/j.ijleo.2018.12.016.

  74. Jing, L., Hashmoonah, A., Joon, H., Yaxi, H., Indra, B., Esrat, J. R., Gokulanathan, A., Jin, K. P., & Deok-Chun, Y. (2019). The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik - International Journal for Light and Electron Optics, 184, 82–89. https://doi.org/10.1016/j.ijleo.2019.03.050.

    Article  Google Scholar 

  75. Majeed, S., Mohammed, D., Muhammad, H. B. I., Mohmmed, T. A., & Mohamad, N. M. I. (2019). Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line- in vitro study. Sustainable Chemistry and Pharmacy, 14, 100179. https://doi.org/10.1016/j.scp.2019.100179.

    Article  Google Scholar 

  76. Saha, R., Karthik, S., Balu, K. S., Suriyaprabha, R., Siva, P., & Rajendran, V. (2018). Influence of the various synthesis methods on the ZnO nanoparticles property made using the bark extract of Terminalia arjuna. Materials Chemistry and Physics, 209, 208–216.

    Google Scholar 

  77. Kalpana, V. N., Kataru, B. A. S., Sravani, N., Vigneshwari, T., Panneerselvam, A., & Rajeswari, V. D. (2018). Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano, 3, 48–55.

    Google Scholar 

  78. Ambika, S., & Sundrarajan, M. (2015). Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Advanced Powder Technology, 26, 1294–1299. https://doi.org/10.1016/j.apt.2015.07.001.

    Article  Google Scholar 

  79. Aljabali, A., Akkam, Y., Al Zoubi, M., Al-Batayneh, K., Al-Trad, B., Abo Alrob, O., Alkilany, A., Benamara, M., & Evans, D. (2018). Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials, 8(3), 174.

    Google Scholar 

  80. Esrat, J. R., Anandapadmanaban, G., Ramya, M., & Deok-Chun, Y. (2018). Synthesis of zinc oxide nanoparticles from immature fruits of Rubus coreanus and its catalytic activity for degradation of industrial dye. Optik, 172, 1179–1186. https://doi.org/10.1016/j.ijleo.2018.07.115.

    Article  Google Scholar 

  81. Clara, D. A., Rajeswari, V., & Sathyajothi, S. (2017). Green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application. Materials Today, 4, 660–667.

    Google Scholar 

  82. Feng, S., Aijun, Y., Dong, M. Y., Juan, W., Xue, G., & Hong, X. T. (2018). Biosynthesis of Barleria gibsoni leaf extract mediated zinc oxide nanoparticles and their formulation gel wound therapy in nursing care of infants and children. Journal of Photochemistry and Photobiology. B. https://doi.org/10.1002/j.jphotobiol.2018.10.014.

  83. Agarwal, H., Menon, S., Venkat, K. S., Rajeshkumar, S., David, S. R., Lakshmi, T., & Deepak, N. V. (2019). Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochemistry and Biophysics Reports, 17, 208–211.

    Google Scholar 

  84. Jamdagni, P., Khatri, P., & Rana, J. S. (2016). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University - Science, 30, 168–175.

    Google Scholar 

  85. Dhabi, N. A., & Arasu, M. V. (2018). Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials (Basel), 8, 500. https://doi.org/10.3390/nano8070500.

    Article  Google Scholar 

  86. Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., & Chung, I. M. (2018). Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess and Biosystems Engineering, 41(1), 21–30.

    Google Scholar 

  87. Karthik, S., Siva, P., Balu, K. S., Suriyaprabha, R., Rajendran, V., & Maaza, M. (2017). Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Advanced Powder Technology, 28, 3184–3194.

    Google Scholar 

  88. Taziwa, R., Meyer, E., Katwire, D., & Ntozakhe, L. (2017). Influence of carbon modification on the morphological, structural, and optical properties of zinc oxide nanoparticles synthesized by pneumatic spray pyrolysis technique. Journal of Nanomaterials. https://doi.org/10.1155/2017/9095301.

  89. Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., & Nandy, P. (2015). Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances, 5, 4993–5003.

    Google Scholar 

  90. Rathod, T., Padalia, H., & Chanda, S. (2017). Green synthesized zinc oxide nanoparticles as a therapeutic tool to combat candidiasis. AIP Conf. Proc., 1837(1), 040065. https://doi.org/10.1063/1.4982149.

    Article  Google Scholar 

  91. Osuntokun, J., Onwudiwe, D. C., & Ebenso, E. E. (2019). Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity. Green Chemistry Letters and Reviews, 12(4), 444–457. https://doi.org/10.1080/17518253.2019.1687761.

    Article  Google Scholar 

  92. Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Ronaldo Anuf, A., Rajesh, K., & Kyzas, G. Z. (2020). Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2020.128107.

  93. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., et al. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7, 219–242. https://doi.org/10.1007/s40820-015-0040-x.

    Article  Google Scholar 

  94. Ajey, S., Singh, N. B., Shadma, A., Tanu, S., & Imtiyaz, H. (2017). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science. https://doi.org/10.1007/s10853-017-1544-1.

  95. Jamdagni, P., Khatri, P., & Rana, J. S. (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud Univiversity - Science, 30, 168–175. https://doi.org/10.1016/j.jksus.2016.10.002.

    Article  Google Scholar 

  96. Hidayat, M. Y., Rosfarizan, M., Uswatun, H. Z., & And nor’, A. A. R. (2019). Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology. https://doi.org/10.1186/s40104-019-0368-z.

  97. Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., & Parhi, P. (2018). Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microbial Pathogenesis, 119, 145–151.

    Google Scholar 

  98. Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905–927.

    Google Scholar 

  99. Singh, A., Singh, N. B., Hussain, I., Singh, H., Yadav, V., & Singh, S. C. (2016). Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. Journal of Biotechnology, 233, 84–94.

    Google Scholar 

  100. Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131–139.

    Google Scholar 

  101. Raliya, R., Nair, R., Chavalmane, S., Wangab, W. N., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7, 1584–1594.

    Google Scholar 

  102. Watson, J. L., Fang, T., Dimpka, C. O., Britt, D. W., McLean, J. E., Jacobson, A., & Anderson, A. J. (2015). The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals, 28(1), 101–112.

    Google Scholar 

  103. Zafar, H., Ali, A., Ali, J. S., Haq, I. U., & Zia, M. (2016). Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Frontiers in Plant Science, 7, 535. https://doi.org/10.3389/fpls.2016.00535.

    Article  Google Scholar 

  104. Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y., & Chen, Y. (2017). Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials, 7(1), 21.

    Google Scholar 

  105. Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A. A., Amin, M. O., & Madkour, M. (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Scientific Reports, 8, 7104.

    Google Scholar 

  106. Jose, Y. J., Manjunathan, M., & Selvaraj, S. J. (2017). Highly photocatalyst efficient in LEDs/solar active and reusable: Sm–ZnO–Ag nanoparticles for methylene blue degradation. Journal of Nanostructure in Chemistry, 7, 259–271.

    Google Scholar 

  107. Rana, N., Chand, S., & Gathania, A. K. (2016). Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. International Nano Letters, 6, 91–98.

    Google Scholar 

  108. Stan, M., Popa, A., Toloman, D., Dehelean, A., Lung, I., & Katona, G. (2015). Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Materials Science in Semiconductor Processing, 39, 23–29. https://doi.org/10.1016/j.mssp.2015.04.038.

    Article  Google Scholar 

  109. Suresh, D., Nethravathi, P. C., Udayabhanu, H. R., Nagabhushana, H., & Sharma, S. C. (2015). Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Materials Science in Semiconductor Processing, 31, 446–454. https://doi.org/10.1016/j.mssp.2014.12.023.

    Article  Google Scholar 

  110. Sharma, S. C. (2016). ZnO nano-flowers from Carica papaya milk: degradation of alizarin red-S dye and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Optik, 127, 6498–6512. https://doi.org/10.1016/j.ijleo.2016.04.036.

    Article  Google Scholar 

  111. Singhal, U., Pendurthi, R., & Khanuja, M.Prunus: a natural source for synthesis of zinc oxide nanoparticles towards photocatalytic and antibacterial applications. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.01.606.

  112. Jamdagni, P., Khatri, P., & Rana, J. S. (2016). Nanoparticles based DNA conjugates for detection of pathogenic microorganisms. International Nano Letters, 6, 139–146.

    Google Scholar 

  113. Kairyte, K., Kadys, A., & Luksiene, Z. (2013). Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology. B, 128, 78–84.

    Google Scholar 

  114. Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology. https://doi.org/10.1016/j.enzmictec.2018.06.009.

  115. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

    Google Scholar 

  116. Dobrucka, R., & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23, 517–523.

    Google Scholar 

  117. Zeinab, S., Atefeh, A., Hamid, F., Mahboubeh, A., Mandana, J., Mitra, M., & Mojtaba, S. (2017). Microwave-assisted biosynthesis of zinc nanoparticles and their cytotoxic and antioxidant activity. Journal of Trace Elements in Medicine and Biology, 39, 116–123. https://doi.org/10.1016/j.jtemb.2016.09.001.

    Article  Google Scholar 

  118. Begum, J. P. S., Sateesh, M. K., Nagabhushana, H., & Basavaraj, R. B. (2018). Averrhoa carambola L. assisted phytonanofabrication of zinc oxide nanoparticles and its anti-microbial activity against drug resistant microbes. Materials Today: Proceedings, 5, 21489–21497.

    Google Scholar 

  119. Shim, Y. J., Soshnikova, V., Anandapadmanaban, G., Mathiyalagan, R., Jimenez Perez, Z. E., Markus, J., Ju Kim, Y., Castro-Aceituno, V., & Yang, D. C. (2018). Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue. Optik. https://doi.org/10.1016/j.ijleo.2018.11.144.

  120. Rajita, R., Bhabhina, N. M., Dharsana, M. V., Nivedita, C. V., & Sindhu, S. (2018). Green synthesis of zinc oxide nanoparticles using extract of Averrhoa bilimbi(L) and their photoelectrode applications. Materials Today: Proceedings, 5, 16472–16477.

    Google Scholar 

  121. Wang, Y., Zhang, Y., Guo, Y., et al. (2018). Synthesis of zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). Journal of Photochemistry and Photobiology, B: Biology. https://doi.org/10.1016/j.jphotobiol.2019.111624.

  122. Viswanathan, V., Arokiadhas, I., Rajagopalan, T., Marimuthu, G., Naiyf, S. A., Shine, K., Jamal, M. K., Mohammed, N. A., & Baskaralingam, V. (2019). Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. Journal of Photochemistry and Photobiology, B: Biology, 197, 111541. https://doi.org/10.1016/j.jphotobiol.2019.111541.

    Article  Google Scholar 

  123. Vijayakumar, S., Krishnakumar, C., Arulmozhi, P., Mahadevan, S., & Parameswari, N. (2018). Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microbial Pathogenesis, 116, 44–48. https://doi.org/10.1016/j.micpath.2018.01.003.

    Article  Google Scholar 

  124. Velsankar, K., Sudhahar, S., Parvathy, G., & Kaliammal, R. (2020). Effect of cytotoxicity and aAntibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Materials Chemistry and Physics, 239, 121976.

    Google Scholar 

  125. Elham, Z., Shahram, P., Mehrdad, K., & Esmaeel, D. (2017). Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it’s in vitro bio-activity. Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2017.05.118.

  126. Rajashekara, S., Arshika, S., Sankranthi, S., & Kumari, S. (2020). Biomedical applications of biogenic zinc oxide nanoparticles manufactured from leaf extracts of Calotropis gigantea (L.) Dryand. BioNanoScience. https://doi.org/10.1007/s12668-020-00746-w.

  127. Vinay, S. P., Udayabhanu, G. N., Chandrappa, C. P., & Chandrasekhar, N. (2020). Hydrothermal synthesis of gold nanoparticles using spider cobweb as novel biomaterial: application to. photocatalytic. Chemical Physics Letters. https://doi.org/10.1016/j.cplett.2020.137402.

  128. Sai Saraswathi, V., Tatsugi, J., Shin, P.-K., & Santhakumar, K. (2016). Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. speciosa. https://doi.org/10.1016/j.jphotobiol.2016.12.032.

  129. Jiang, X., Liu, Y., Gao, Y., Zhang, X., & Shi, L. (2010). Particuology, 8, 383–385.

    Google Scholar 

  130. Hanley, C., Layne, J., Punnoose, A., Reddy, K. M., Coombs, I., Coombs, A., et al. (2008). Nanotechnology, 19, 295103.

    Google Scholar 

  131. Ostrovsky, S., Kazimirsky, G., Gedanken, A., & Brodie, C. (2009). Nano Research, 2002, 882–890.

    Google Scholar 

  132. Chakraborti, S., Chakraborty, S., Saha, S., et al. (2017). PEG functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen speciesdependent impairment of DNA damage repair enzyme NEIL2. Free Radical Biology and Medicine, 103, 35–47.

    Google Scholar 

  133. Wang, J., Lee, J. S., Kim, D., & Zhu, L. (2017). Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Applied Materials and Interfaces, 9(46), 39971–39984.

    Google Scholar 

  134. Ghaffari, S. B., Sarrafzadeh, M. H., Fakhroueian, Z., Shahriari, S., & Khorramizadeh, M. R. (2017). Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: synthesis, characterization, and anticancer assessment. Materials Science and Engineering: C, 79, 465–472.

    Google Scholar 

  135. Li, Y., Zhang, C., Liu, L., Gong, Y., Xie, Y., & Cao, Y. (2017). Effects of baicalein or baicalin on the colloidal stability of ZnO nanoparticles (NPs) and toxicity of NPs to Caco-2 cells. Toxicology Mechanisms and Methods, 28(3), 167–176.

    Google Scholar 

  136. Xi-Feng, Z., Zhi-Guo, L., Wei, S., & Sangiliyandi, G. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17, 1534. https://doi.org/10.3390/ijms17091534.

    Article  Google Scholar 

  137. Ishwarya, R., Vaseeharan, B., Kalyani, S., et al. (2018). Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology B: Biology, 178, 249–258.

    Google Scholar 

  138. Rekha, K., Nirmala, M., Nair, M. G., & Anukaliani, A. (2010). Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B: Condensed Matter, 405(15), 3180–3185. https://doi.org/10.1016/j.physb.2010.04.042.

    Article  Google Scholar 

  139. Sharma, N., Kumar, J., Thakur, S., Sharma, S., & Shrivastava, V. (2013). Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtilis. Drug Invention Today, 5(1), 50–54. https://doi.org/10.1016/j.dit.2013.03.007.

    Article  Google Scholar 

  140. Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55–61. https://doi.org/10.1016/j.mssp.2014.12.053.

    Article  Google Scholar 

  141. Ajay, K. P., Ratiram, G. C., Prashant, B. C., Sachin, Y., Aniruddha, M., Vaishali, N. S., Alok, R. R., & Harjeet, D. J. (2019). Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Materials Science and Engineering: C, 99, 783–793.

    Google Scholar 

  142. Abdolhossien, M., Nafiseh, M., Omolbanin, E., Mehrdad, K., & Mina, S. (2019). Zinc oxide nanoparticles: biosynthesis, characterization, antifungal and cytotoxic activity. Materials Science and Engineering: C, 104, 109981. https://doi.org/10.1016/j.msec.2019.109981.

    Article  Google Scholar 

  143. Samira, S. R., Ali, M. S., & Biosynthesis, S. M. (2019). Characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microbial Pathogenesis, 131, 239–245. https://doi.org/10.1016/j.micpath.2019.04.022.

    Article  Google Scholar 

  144. Murali, M., Mahendra, C., Nagabhushan, Rajashekar, N., Sudarshana, M.S., Raveesha, K.A., Amruthesh, K.N. (2017). Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.—an endemic species. https://doi.org/10.1016/j.saa.2017.02.027.

  145. Rajabi, H.R., Naghiha, A., Kheirizdeh, M., Sadatfaraji, H., Mirzaei, A., Alvand, Z.M. (2018). Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties, https://doi.org/10.1016/j.msec.2017.03.090

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunday Adewale Akintelu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akintelu, S.A., Folorunso, A.S. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications. BioNanoSci. 10, 848–863 (2020). https://doi.org/10.1007/s12668-020-00774-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00774-6

Keywords

Navigation