Skip to main content
Log in

Cyclea peltata Leaf Mediated Green Synthesized Bimetallic Nanoparticles Exhibits Methyl Green Dye Degradation Capability

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Nowadays, biological materials are explored widely for green synthesis of nanoparticles because of its ease in scaling up when compared with conventional approaches. In this paper, we report the biosynthesis of bimetallic nanoparticles (FeCuNPs) from their precursors FeSO4 and CuSO4, using Cyclea peltata leaf extract. Biosynthesized nanoparticles were characterized by UV-visible spectroscopy, particle size analyser, FESEM, EDAX, XRD and FTIR. UV-visible spectroscopic investigation confirmed the production of bimetallic core shell nanoparticles at 250 nm, where the colour change in the solution indicated the formation of nanoparticles. The synthesized FeCuNPs were tested for their methyl green dye degradation and degradation kinetics. Results indicated that bimetallic nanoparticles could effectively degrade methyl green dye up to 82% within 105 min, which followed pseudo second order kinetics with R2 of 0.9862. Hence time-dependent reduction in methyl green absorption maxima, obtained from UV-Spectrophotometric analysis and LCMS spectra of degraded dye, confirmed that the green synthesized bimetallic nanoparticles from the leaf extract of Cyclea peltata has the potential of dye degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prabhu, Y. T., Rao, K. V., Sai, V. S., & Pavani, T. (2017). A facile biosynthesis of copper nanoparticles: A micro-structural and antibacterial activity investigation. Journal of Saudi Chemical Society, 21(2), 180–185. https://doi.org/10.1016/j.jscs.2015.04.002.

    Article  Google Scholar 

  2. Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38(4), 545–560.

    Article  Google Scholar 

  3. Agarwal, H., Kumar, S. V., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach. Resource-Efficient Technologies, 3(4), 406–413.

    Article  Google Scholar 

  4. Elango, G., Rathika, G., & Elango, S. (2017). Physico-chemical parameters of textile dyeing effluent and its impacts with case study. International Journal of Research in Chemistry and Environment, 7(1), 17–24.

    Google Scholar 

  5. Prieto, D., Aparicio, G., Machado, M., & Zolessi, F. R. (2015). Application of the DNA-specific stain methyl green in the fluorescent labeling of embryos. Journal of Visualized Experiments, 2(99), e52769.

    Google Scholar 

  6. Nezamzadeh-Ejhieh, A., & Shams-Ghahfarokhi, Z. (2012). Photodegradation of methyl green by nickel-dimethylglyoxime/ZSM-5 zeolite as a heterogeneous catalyst. Journal of Chemistry, 2013, 1–11. https://doi.org/10.1155/2013/104093.

    Article  Google Scholar 

  7. Oplatowska, M., Donnelly, R. F., Majithiya, R. J., Kennedy, D. G., & Elliott, C. T. (2011). The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels. Food and Chemical Toxicology, 49(8), 1870–1876.

    Article  Google Scholar 

  8. Memon, F. N., & Memon, S. (2015). Sorption and desorption of basic dyes from industrial wastewater using calix [4] arene based impregnated material. Separation Science and Technology, 50(8), 1135–1146.

    Article  Google Scholar 

  9. Habibi, M. H., & Askari, E. (2011). Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass. Iranian Journal of Catalysis, 1(1), 41–44.

    Google Scholar 

  10. Sivaraman, T., Sreedevi, N. S., Meenatchisundaram, S., & Vadivelan, R. (2017). Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom. Indian Journal of Pharmacology, 49(4), 275–281.

    Article  Google Scholar 

  11. Krishnaveni, M., & Dhanalakshmi, R. (2014). Phytoconstituent study of brown rice. World Journal of Pharmaceutical Research, 3(8), 1092–1099.

    Google Scholar 

  12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  Google Scholar 

  13. Santhi, K., & Sengottuvel, R. (2016). Qualitative and quantitative phytochemical analysis of Moringa concanensisNimmo. International Journal of Current Microbiology and Applied Sciences, 5(1), 633–640.

    Article  Google Scholar 

  14. Ganesh, S., & Vennila, J. J. (2011). Phytochemical analysis of Acanthus ilicifolius and Avicennia officinalis by GC-MS. Research Journal of Phytochemistry, 5(1), 60–65.

    Article  Google Scholar 

  15. Latha, N., & Gowri, M. (2014). Biosynthesis and characterisation of Fe3O4 nanoparticles using Caricaya papaya leaves extract. International Journal of Science and Research, 3(11), 1551–1556.

    Google Scholar 

  16. Ahmed, R. H., & Mustafa, D. E. (2020). Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters 10, 1–14.

  17. Irawan, C., Rochaeni, H., Sulistiawaty, L., & Roziafanto, A. N. (2018). Phytochemical Screening, LC-MS Studies and Antidiabetic Potential of Methanol Extracts of Seed Shells of Archidendron bubalinum (Jack) IC Nielson (Julang Jaling) from Lampung, Indonesia. Pharmacognosy Journal, 10(6), S77–S82.

  18. Bakari, S., Hajlaoui, H., Daoud, A., Mighri, H., ROSS-GARCIA, J. M., Gharsallah, N., & Kadri, A. (2018). Phytochemicals, antioxidant and antimicrobial potentials and LC-MS analysis of hydroalcoholic extracts of leaves and flowers of Erodium glaucophyllum collected from Tunisian Sahara. Food Science and Technology, 38(2), 310–317.

  19. Lin, L. Z., & Harnly, J. M. (2007). A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. Journal of Agricultural and Food Chemistry, 55(4), 1084–1096.

    Article  Google Scholar 

  20. Chen, Y., Yu, H., Wu, H., Pan, Y., Wang, K., Jin, Y., & Zhang, C. (2015). Characterization and quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in pollen typhae for transformation rule exploration. Molecules, 20(10), 18352–18366.

    Article  Google Scholar 

  21. Latha, N., & Gowri, M. (2014). Bio synthesis and characterisation of Fe3O4 nanoparticles using Caricaya papaya leaves extract. Synthesis, 3, 1551–1556.

    Google Scholar 

  22. Dhumale, V. A., Gangwar, R. K., Datar, S. S., & Sharma, R. B. (2012). Reversible aggregation control of polyvinylpyrrolidone capped gold nanoparticles as a function of pH. Materials Express, 2(4), 311–318. https://doi.org/10.1166/mex.2012.1082.

    Article  Google Scholar 

  23. Nayak, S., Sajankila, S. P., Rao, C. V., Hegde, A. R., & Mutalik, S. (2019). Biogenic synthesis of silver nanoparticles using Jatropha curcas seed cake extract and characterization: Evaluation of its antibacterial activity. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–9. https://doi.org/10.1080/15567036.2019.1632394.

  24. Lozhkomoev, A. S., Lerner, M. I., Pervikov, A. V., Naidenkin, E. V., Mishin, I. P., Vorozhtsov, A. B., et al. (2019). The formation of FeCu composite based on bimetallic nanoparticles. Vacuum, 159, 441–446.

    Article  Google Scholar 

  25. Chung, I. M., Abdul Rahuman, A., Marimuthu, S., Vishnu Kirthi, A., Anbarasan, K., Padmini, P., & Rajakumar, G. (2017). Green synthesis of copper nanoparticles using Ecliptaprostrata leaves extract and their antioxidant and cytotoxic activities. Experimental and Therapeutic Medicine, 14(1), 18–24. https://doi.org/10.3892/etm.e2017.4466.

    Article  Google Scholar 

  26. Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. In press. https://doi.org/10.1016/j.arabjc.2017.05.011.

  27. Zin, M. T., Borja, J., Hinode, H., & Kurniawan, W. (2013). Synthesis of bimetallic Fe/cu nanoparticles with different copper loading ratios. Dimensions, 13(19), 1031–1035.

    Google Scholar 

  28. Verma, S. K., Nisha, K., Panda, P. K., Patel, P., Kumari, P., Mallick, M. A., et al. (2020). Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis. Science of the Total Environment, 713, 136521.

    Article  Google Scholar 

  29. Carvalho, P. M., Felício, M. R., Santos, N. C., Gonçalves, S., & Domingues, M. M. (2018). Application of light scattering techniques to nanoparticle characterization and development. Frontiers in Chemistry, 6, 237.

    Article  Google Scholar 

  30. Kumar, A., & Pandey, G. (2017). The photocatalytic degradation of methyl green in presence of visible light with photoactive Ni0. 10: La0. 05: TiO2 nanocomposites. IOSR Journal of Applied Chemistry(IOSR-JAC), 10(9), 31–44.

    MathSciNet  Google Scholar 

  31. Vineela, D., Janardana Reddy, S., & Kiran Kumar, B. (2017). Preparation, synthesis and characterisation of silver nanoparticles by fish scales of Catlacatla and their antibacterial activity against fish pathogen, Aeromonasveronii. European Journal of Pharmaceutical and Medical Research, 4(4), 537–545.

    Google Scholar 

  32. Mai, F. D., Chen, C. C., Chen, J. L., & Liu, S. C. (2008). Photodegradation of methyl green using visible irradiation in ZnO suspensions: Determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method. Journal of Chromatography. A, 1189(1–2), 355–365. https://doi.org/10.1016/j.chroma.2008.01.027.

    Article  Google Scholar 

  33. Sorbiun, M., Mehr, E. S., Ramazani, A., & Fardood, S. T. (2018). Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental Research, 12(1), 29–37.

    Article  Google Scholar 

  34. Nadaf, N. Y., & Kanase, S. S. (2019). Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arabian Journal of Chemistry, 12(8), 4806–4814.

    Article  Google Scholar 

  35. Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., & Natarajan, S. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology., 190, 86–97.

    Article  Google Scholar 

  36. Sherin, L., Zafar, M. F., & Mustafa, M. (2019). Comparative study on the catalytic degradation of methyl orange by silver nanoparticles synthesized by solution combustion and green synthesis method. Arabian Journal for Science and Engineering., 44(12), 9851–9857.

    Article  Google Scholar 

  37. Modwi, A., Taha, K. K., Khezami, L., Bououdina, M., & Houas, A. (2019). Silver decorated cu/ZnO photocomposite: Efficient green degradation of malachite. Journal of Materials Science: Materials in Electronics., 30(4), 3629–3638.

    Google Scholar 

  38. Ganapuram, B. R., Alle, M., Dadigala, R., Dasari, A., Maragoni, V., & Guttena, V. (2015). Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. International Nano Letters, 5(4), 215–222.

    Article  Google Scholar 

  39. Irani, M., Mohammadi, T., & Mohebbi, S. (2016). Photocatalytic degradation of methylene blue with ZnO nanoparticles; a joint experimental and theoretical study. Journal of the Mexican Chemical Society, 60(4), 218–225.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support received from NMAM Institute of Technology for carrying out this research work. We would like to thank Manipal College of Pharmaceutical Sciences, Manipal and DST-PURSE Laboratory, Mangalore University for the technical support in characterizing the nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Nayak.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The study does not involve the use of humans or animals , hence does not require ethical approval.

Consent to Participate and funding statement

All authors agree to participate in this investigation. The study did not receive any funding.

Consent for Publication

All authors agree to participate in this article.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suvarna, A.R., Shetty, A., Anchan, S. et al. Cyclea peltata Leaf Mediated Green Synthesized Bimetallic Nanoparticles Exhibits Methyl Green Dye Degradation Capability. BioNanoSci. 10, 606–617 (2020). https://doi.org/10.1007/s12668-020-00739-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00739-9

Keywords

Navigation