Skip to main content

Advertisement

Log in

Evaluation of Different Oxidative Stress Parameters and Apoptosis in Human Cervical Cancer Cells Exposed to Rod and Spherical Shaped Zinc Oxide Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2019

This article has been updated

Abstract

Zinc oxide nanoparticles are presently being used in cosmetics, paints, biosensors, and medical applications. However, zinc oxide nanoparticles are broadly used in the cosmetic industry for many years; recently, they have been explored for use in cancer therapy. This study was intended to comprehend the mechanism of the differential cytotoxicity of rod and spherical shaped zinc oxide nanoparticles to cervical cancer cells HeLa and SiHa. The role of ion dissolution in the toxicity of zinc oxide nanoparticles was also investigated. Zinc oxide nanorod induced significantly higher oxidative stress, reactive oxygen species compared to spherical shaped zinc oxide nanoparticles. Additionally, rod shaped nanoparticles activated the NF-κB signaling pathway. Besides, zinc oxide nanorod also induced mitochondrial membrane damage leading to apoptosis as observed by PARP cleavage and reduction of Phospho-Bad. In conclusion, zinc oxide nanorod, after proper tailoring, may have potential to use as chemotherapeutic agents against cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 20 August 2019

    The original article unfortunately contains minor errors in Fig. 1B.

  • 20 August 2019

    The original article unfortunately contains minor errors in Fig. 1B.

Abbreviations

NPs:

Nanoparticles

ZnO NPs:

Zinc oxide nanoparticles

ROS:

Reactive oxygen species

MMP:

Mitochondrial membrane potential

TEM:

Transmission electron microscope

FE-SEM:

Field-emission scanning electron microscope

DLS:

Dynamic light scattering

PDI:

Polydispersity index

XRD:

X-ray diffraction

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

DCFDA:

2,7-Dichlorofluorescein di-acetate

MDA:

Malondialdehyde

LPO:

Lipid peroxidation

GSH:

Glutathione

PC:

Protein carbonyl

SOD:

Superoxide dismutase

CAT:

Catalase

LDH:

Lactate dehydrogenase

JC-1 dye:

5,5′,6,6′-Tetrachloro-1,1′,3,3-tetraethylbenzimidazolcarbocyanine iodide

NF-κB:

Nuclear factor-kappa beta

PARP:

Poly ADP ribose polymerase

ARS:

Alizarin Red S

OD:

Optical density.

References

  1. Serpone, N., Dondi, D., Albini, A. (2007). Inorganic and organic UV filters: their role and efficiency in sunscreens and suncare products. Inorganica Chim Acta, 306, 794–803.

    Article  Google Scholar 

  2. Yuranova, T., Laub, D., Kiwi, J. (2007). Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation. Catalysis Today, 122, 109–117.

    Article  Google Scholar 

  3. Wang, B., Feng, W., Wang, M., Wang, T., Gu, Y., Zhu, M., et al. (2008). Acute toxicological impact of nano-and sub micro-scaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research, 10, 263–276.

    Article  Google Scholar 

  4. Hanley, C., Layne, J., Punnoose, A., Reddy, K. M., Coombs, I., Coombs, A., et al. (2008). Preferential killing of cancer cells and activated human T cells using zinc oxide nanoparticles. Nanotechnology, 19, 295103.

    Article  Google Scholar 

  5. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., Manivannan, G. (2011). Selective toxicity of ZnO nanoparticles toward Gram positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine, 7, 184–192.

    Article  Google Scholar 

  6. Jia, H. Y., Liu, Y., Zhang, X. J., Han, L., Du, L. B., Tian, Q., et al. (2008). Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. Journal of the American Chemical Society, 131, 14261–14263.

    Google Scholar 

  7. Durocher, S., Rezaee, A., Hamm, C., Rangan, C., Mittler, S., Mutus, B. (2009). Disulfide linked, gold nanoparticle based teagent for detecting small molecular weight thiols. Journal of the American Chemical Society, 131, 2475–2477.

    Article  Google Scholar 

  8. Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2, 2121–2134.

    Article  Google Scholar 

  9. Heng, B. C., Zhao, X., Xiong, S., Ng, K. W., Boey, F. Y. C., Loo, J. S. C. (2011). Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format. Archives of Toxicology, 85, 695–704.

    Article  Google Scholar 

  10. Sharma, V., Shukla, R. K., Saxena, N., Parmar, D., Das, M., Dhawan, A. (2009). DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters, 185, 211–218.

    Article  Google Scholar 

  11. Lin, W. S., Xu, Y., Huang, C. C., Ma, Y. F., Shannon, K. B., Chen, D. R., et al. (2009). Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. Journal of Nanoparticle Research, 11, 25–39.

    Article  Google Scholar 

  12. Sharma, V., Anderson, D., Dhawan, A. (2012). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, 17, 852–870.

    Article  Google Scholar 

  13. Hsiao, I. L., & Huang, Y. J. (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Science of the Total Environment, 409, 1219–1228.

    Article  Google Scholar 

  14. Kang, T., Guan, R., Chen, X., Song, Y., Jiang, H., Zhao, J. (2013). In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Research Letters, 8, 496–501.

    Article  Google Scholar 

  15. Chhabra, S., Bhavani, M., Mahajan, N., Bawaskar, R. (2010). Cervical cancer in Indian rural women: trends over two decades. Journal of Obstetrics and Gynaecology, 30, 725–728.

    Article  Google Scholar 

  16. Yuan, J. H., Chen, Y., Zha, H. X., Song, H. J., Li, C. Y., Li, J., et al. (2010). Determination, characterization and cytotoxicity on human embryonic lung fibroblast of ZnO nanoparticles. Colloids and Surfaces B: Biointerfaces, 76, 145–150.

    Article  Google Scholar 

  17. Huang, C. C., Aronstam, R. S., Chen, D. R., Huang, Y. W. (2010). Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology In Vitro, 24, 45–55.

    Article  Google Scholar 

  18. Wahab, R., Kaushik, N. K., Verma, A. K., Mishra, A., Hwang, I. H., Yang, Y. B., et al. (2011). Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. Journal of Biological Inorganic Chemistry, 16, 431–42.

    Article  Google Scholar 

  19. Bhattacharya, D., Santra, C. R., Ghosh, A. N., Karmakar, P. (2014). Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. Journal of Biomedical Nanotechnology, 10, 707–716.

    Article  Google Scholar 

  20. Bhattacharya, D., Samanta, S., Mukherjee, A., Santra, C. R., Ghosh, A. N., Karmakar, P. (2012). Antibacterial activities of polyethylene glycol, tween 80 and sodium dodecyl sulphate coated silver nanoparticles in normal and multi-drug resistant bacteria. Journal of Nanoscience and Nanotechnology, 12, 2513–2521.

    Article  Google Scholar 

  21. Shamsi, F. A., & Boulton, M. (2001). Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Investigative Ophthalmology & Visual Science, 42, 3041–3046.

    Google Scholar 

  22. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., et al. (1990). Determination of carbonyl contents of oxidatively modified proteins. Methods in Enzymology, 186, 464–478.

    Article  Google Scholar 

  23. Kakkar, P. S., Das, B., Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry & Biophysics, 21, 130–132.

    Google Scholar 

  24. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Article  Google Scholar 

  25. Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  Google Scholar 

  26. Vassault, A. (1983) Lactate dehydrogenase. In H. Bergemeyer (Ed.), Methods of Enzyme Analysis (p. 118). Weinheim: Verlag Chemie.

  27. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  Google Scholar 

  28. Bagchi, B., Kar, S., Dey, S., Bhandary, S., Roy, D., Mukhopadhyay, T., et al. (2013). In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids and Surfaces B: Biointerfaces, 108, 358–365.

    Article  Google Scholar 

  29. Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles on mammalian cells. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 41, 2699–2711.

    Article  Google Scholar 

  30. Hu, X. K., Cook, S., Wang, P., Hwang, H. M. (2009). In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Science of the Total Environment, 407, 3070–3072.

    Article  Google Scholar 

  31. Yang, S. T., Liu, J. H., Wang, J., Yuan, Y., Cao, A. N., Wang, H. F., et al. (2010). Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment. Journal of Nanoscience and Nanotechnology, 10, 8638–8645.

    Article  Google Scholar 

  32. Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., et al. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6, 1794–1797.

    Article  Google Scholar 

  33. Bishop, G. M., Dringen, R., Robinson, S. R. (2007). Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radical Biology & Medicine, 42, 1222–1230.

    Article  Google Scholar 

  34. Ahamed, M., Akhtar, M. J., Raja, M., Ahmad, I., Siddiqui, M. K. J., AlSalhi, M. S., et al. (2011). Zinc oxide nanorod induced apoptosis via p53, bax/bcl-2 and survivin pathways in human lung cancer cells: role of oxidative stress. Nanomedicine, 7, 904–913.

    Article  Google Scholar 

  35. Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. A. M., Ahmed, J., Alrokayan, S. A. (2012). ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. International Journal of Nanomedicine, 7, 845–857.

    Google Scholar 

  36. Wang, J. J., Sanderson, J. S. B., Wang, H. (2007). Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutation Research, 628, 99–106.

    Article  Google Scholar 

  37. Møller, P., Jacobsen, N. R., Folkmann, J. K., Danielsen, P. H., Mikkelsen, L., Hemmingsen, J. G., et al. (2010). Role of oxidative damage in toxicity of particulates. Free Radical Research, 44, 1–46.

    Article  Google Scholar 

  38. Karin, M., & Lin, A. (2002). NF-κB at the crossroads of life and death. Nature Immunology, 3, 221–227.

    Article  Google Scholar 

  39. Reuter, S., Eifes, S., Dicato, M., Aggarwal, B. B., Diederich, M. (2008). Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochemical Pharmacology, 76, 1340–1351.

    Article  Google Scholar 

  40. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  Google Scholar 

  41. Perchellet, E. M., Wang, Y., Weber, R. L., Sperfslage, B. J., Lou, K., Crossland, J., et al. (2004). Synthetic 1,4-anthracenedione analogs induce cytochrome C release, caspase-9, -3 and -8 activities, poly(ADP-ribose) polymerase-1 cleavage and internucleosomal DNA fragmentation in HL-60 cells by a mechanism which involves caspase-2 activation but not Fas signaling. Biochemical Pharmacology, 67, 523–537.

    Article  Google Scholar 

  42. Laha, D. R., Bhattacharya, D., Pramanik, A., Santra, C. R., Pramanik, P., Karmakar, P. (2012). Evaluation of copper iodide and copper phosphate nanoparticles for their potential cytotoxic effect. Toxicology Research, 1, 131–136.

    Article  Google Scholar 

  43. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, P. N., Limbach, L., et al. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40, 4374–4381.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by UPE (Phase II), DST-PURSE program and State Government Fellowship scheme of Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal Karmakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors alone are responsible for the content and writing of the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, D., Bhattacharyya, A. & Karmakar, P. Evaluation of Different Oxidative Stress Parameters and Apoptosis in Human Cervical Cancer Cells Exposed to Rod and Spherical Shaped Zinc Oxide Nanoparticles. BioNanoSci. 6, 1–14 (2016). https://doi.org/10.1007/s12668-015-0186-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-015-0186-5

Keywords

Navigation