Skip to main content
Log in

Polyelectrolyte Microcapsule Arrays: Preparation and Biomedical Applications

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In the need of development of versatile and flexible platforms for sensing and other biomedical applications, micro- and nanostructured particle arrays attract strong scientific interest. In this review we focus on fabrication of arrays of polyelectrolyte layer-by-layer assembled microcapsules and bio-related applications of such arrays. A cargo encapsulated in the microcapsules can be released on demand, thus opening perspectives for biosensing, diagnostics, controlled drug delivery, and tissue engineering. Here, we also consider a new composite system—microcapsules embedded into polymeric film—both components are made by the LbL technique. Fabrication approaches and perspectives in the preparation and in the use of the microcapsule arrays are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Niu, Z., He, J., Russell, T. P., Wang, Q. (2010). Synthesis of Nano/Microstructures at Fluid Interfaces. Angew. Chem. Int. Ed., 49, 10052–10066. doi:10.1002/anie.201001623.

    Google Scholar 

  2. Kowalczyk, B., Apodaca, M. M., Nakanishi, H., Smoukov, S. K., Grzybowski, B. A. (2009). Lift-Off and Micropatterning of Mono- and Multilayer Nanoparticle Films. Small., 5(17), 1970–1973. doi:10.1002/smll.200900521.

    Google Scholar 

  3. Hatton, B. D., & Aizenberg, J. (2012). Writing on Superhydrophobic Nanopost Arrays: Topographic Design for Bottom-up Assembly. Nano Lett., 12(9), 4551–4557. doi:10.1021/nl301775x.

    Google Scholar 

  4. Zhang, T., Ma, Y., Qi, L. (2013). Bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions. J. Mater. Chem. B., 1, 251–264. doi:10.1039/c2tb00175f.

    Google Scholar 

  5. Erokhina, S., Berzina, T., Cristofolini, L., Shchukin, D., Sukhorukov, G., Musa, L., et al. (2004). Patterned arrays of magnetic nano-engineered capsules on solid supports. J. Magnetism and Magnetic Materials., 272–276, 1353–1354. doi:10.1016/j.jmmm.2003.12.1205.

    Google Scholar 

  6. Suzuki, M., Yasukawa, T., Mase, Y., Oyamatsu, D., Shiku, H., Matsue, T. (2004). Dielectrophoretic Micropatterning with Microparticle Monolayers Covalently Linked to Glass Surfaces. Langmuir., 20, 1105–11011. doi:10.1021/la048111p.

    Google Scholar 

  7. Shchepelina, O., Lisunova, M. O., Drachuk, I., Tsukruk, V. V. (2012). Morphology and Properties of Microcapsules with Different Core Releases. Chem. Mater., 24, 1245–1254. doi:10.1021/cm202820r.

    Google Scholar 

  8. Decher, G., & Schmitt, J. (1992). Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes. Prog. Colloid Polym. Sci., 89, 160–164. doi:10.1007/BFb0116302.

    Google Scholar 

  9. Sukhorukov, G. B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V. I., et al. (1998). Stepwise polyelectrolyte assembly on particle surfaces—A novel approach to colloid design. Polym. Adv. Technol., 9, 759–767. doi:10.1002/(SICI)1099-1581(1998100)9:10/11<759::AID-PAT846>3.0.CO;2-Q.

    Google Scholar 

  10. Choi, M. I., Malak, S. T., Xu, W., Heller, W. T., Tsitsilianis, C., Tsukruk, V. V. (2013). Multicompartmental Microcapsules from Star Copolymer. Macromolecules., 46, 1425–1436. doi:10.1021/ma302483j.

    Google Scholar 

  11. De Geest, B. G., Sanders, N. N., Sukhorukov, G. B., Demeester, J., De Smedt, S. C. (2007). Release mechanisms for polyelectrolyte capsules. Chem. Soc. Rev., 36, 636–649. doi:10.1039/b600460c.

    Google Scholar 

  12. Bedard, M. F., De Geest, B. G., Skirtach, A. G., Mohwald, H., Sukhorukov, G. B. (2010). Polymeric microcapsules with light responsive properties for encapsulation and release. Advances in Colloid and Interface Science., 158, 2–14. doi:10.1016/j.cis.2009.07.007.

    Google Scholar 

  13. Diaspro, A., Silvano, D., Krol, S., Cavalleri, O., Gliozzi, A. (2002). Single living cell encapsulation in nano-organized polyelectrolyte shells. Langmuir., 18, 5047–5050. doi:10.1021/la025646e.

    Google Scholar 

  14. De Geest, B. G., De Koker, S., Sukhorukov, G. B., Kreft, O., Parak, W. J., Skirtach, A. G., et al. (2009). Polyelectrolyte microcapsules for biomedical applications. Soft Matter., 5, 282–291. doi:10.1039/b808262f.

    Google Scholar 

  15. Bogdanowicz, K. A., Tylkowski, B., Giamberini, M. (2013). Preparation and Characterization of Light-Sensitive Microcapsules Based on a Liquid Crystalline Polyester. Langmuir., 29, 1601–1608. doi:10.1021/la3038878.

    Google Scholar 

  16. Luo, R., Venkatraman, S., Neu, B. (2013). Layer-by-Layer Polyelectrolyte − Polyester Hybrid Microcapsules for Encapsulation and Delivery of Hydrophobic Drugs. Biomacromolecules., 14(7), 2262–2271. doi:10.1021/bm4003915.

    Google Scholar 

  17. Pastorino, L., Erokhina, S., Soumetz, F. C., Bianchini, P., Konovalov, O., Diaspro, A., et al. (2011). Collagen containing microcapsules: Smart containers for disease controlled therapy. Journal of Colloid and Interface Science., 357, 56–62. doi:10.1016/j.jcis.2011.02.010.

    Google Scholar 

  18. Volodkin, D. V., Delcea, M., Moehwald, H., Skirtach, A. G. (2009). Remote Near-IR Light Activation of a Hyaluronic Acid/Poly(L-lysine) Multilayered Film and Film-Entrapped Microcapsules. ACS Appl. Mater. Interfaces., 1(8), 1705–1710. doi:10.1021/am900269c.

    Google Scholar 

  19. Kim, S.-H., Hwang, H., Lim, C. H., Shim, J. W., Yang, S.-M. (2011). Packing of Emulsion Droplets: Structural and Functional Motifs for Multi-Cored Microcapsules. Adv. Funct. Mater., 21, 1608–1615. doi:10.1002/adfm.201002316.

    Google Scholar 

  20. Antipina, M. N., & Sukhorukov, G. B. (2011). Remote control over guidance and release properties of composite polyelectrolyte based capsules. Advanced Drug Delivery Reviews., 63, 716–729. doi:10.1016/j.addr.2011.03.012.

    Google Scholar 

  21. De Cock, L. J., De Koker, S., De Geest, B. G., Grooten, J., Vervaet, C., Remon, J. P., et al. (2010). Polymeric Multilayer Capsules in Drug Delivery. Angew. Chem. Int. Ed., 49, 6954–6973. doi:10.1002/anie.200906266.

    Google Scholar 

  22. Antipina, M. N., Kiryukhin, M. V., Chong, K., Low, H. Y., Sukhorukov, G. B. (2009). Patterned microcontainers as novel functional elements for μTAS and LOC. Lab Chip., 9, 1472–1475. doi:10.1039/b819725c.

    Google Scholar 

  23. Kazakova, L. I., Shabarchina, L. I., Anastasova, S., Pavlov, A. M., Vadgama, P., Skirtach, A. G., et al. (2012). Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal Bioanal Chem., 405(5), 1559–1568. doi:10.1007/s00216-012-6381-0.

    Google Scholar 

  24. Yang, J., & Gao, C. Y. (2008). Progress in fabricating arrays of soft spherical vessels on mesoscale with spatial control. Chinese Sciense Bulletin., 53(22), 3477–3490. doi:10.1007/s11434-008-0485-0.

    Google Scholar 

  25. Berzina, T., Erokhina, S., Shchukin, D., Sukhorukov, G., Erokhin, V. (2003). Deposition and patterning of polymeric capsule layers. Macromolecules., 36(17), 6493–6496. doi:10.1021/ma0346557.

    Google Scholar 

  26. Duan, G., Cai, W., Li, Y., Li, Z., Cao, B., Luo, Y. (2006). Transferable Ordered Ni Hollow Sphere Arrays Induced by Electrodeposition on Colloidal Monolayer. J. Phys. Chem. B., 110, 7184–7188. doi:10.1021/jp057421t.

    Google Scholar 

  27. Li, Y., Cai, W., Duan, G., Cao, B., Sun, F. (2005). Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films. J. Mater. Res., 20(2), 338–343. doi:10.1557/JMR.2005.0060.

    Google Scholar 

  28. Park, J. Y., Pernites, R., Estillore, N., Hyakutake, T., Ponnapati, R., Tiu, B. D., et al. (2011). Capsulation of carbon nanotubes on top of colloidally templated and electropolymerized polythiophene arrays. Chem. Commun., 47, 8871–8873. doi:10.1039/c1cc12033f.

    Google Scholar 

  29. Maheshkumar, J., & Dhathathreyan, A. (2013). Langmuir and Langmuir–Blodgett films of capsules of haemoglobin at air/water and solid/air interfaces. Journal of Chemical Sciences., 125(2), 219–227. doi:10.1007/s12039-013-0370-5.

    Google Scholar 

  30. Song, W., Yang, Y., Moehwald, H., Li, J. (2011). Two-dimensional polyelectrolyte hollow sphere arrays at a liquid-air interface. Soft Matter., 7, 359–362. doi:10.1039/c0sm01015d.

    Google Scholar 

  31. Yang, J., & Gao, C. (2009). Fabrication of microcapsule arrays on chemically patterned surfaces via covalent linking. J Zhejlang Univ Sci A., 10(1), 114–120. doi:10.1631/jzus.A0820131.

    Google Scholar 

  32. Nolte, M., & Fery, A. (2004). Microstructuring of Polyelectrolyte Coated Surfaces for Directing Capsule Adhesion. IEEE Transactions on Nanobioscience., 3(1), 22–26. doi:10.1109/TNB.2004.824256.

    Google Scholar 

  33. Feng, J., Wang, B., Gao, C., Shen, J. (2004). Selective Adsorption of Microcapsules on Patterned Polyelectrolyte Multilayers. Adv. Mater., 16(21), 1940–1944. doi:10.1002/adma.200400573.

    Google Scholar 

  34. Wang, B., Zhao, Q., Wang, F., Gao, C. (2006). Biologically driven assembly of polyelectrolyte microcapsule patterns to fabricate microreactor arrays. Angewandte Chemie International Edition., 45(10), 1560–1563. doi:10.1002/anie200502822.

    Google Scholar 

  35. Hyun, D. C., Moon, G. D., Park, C. J., Kim, B. S., Xia, Y., Jeong, U. (2011). Strain-Controlled Release of Molecules from Arrayed Microcapsules Supported on an Elastomer Substrate. Angew. Chem. Int. Ed., 50, 724–727. doi:10.1002/anie.201004838.

    Google Scholar 

  36. Suntivich, R., Shchepelina, O., Choi, I., Tsukruk, V. V. (2012). Inkjet-Assisted Layer-by-Layer Printing of Encapsulated Arrays. ACS Appl. Mater. Interfaces., 4, 3102–3110. doi:10.1021/am3004544.

    Google Scholar 

  37. Shim, H. Y., Lee, S. H., Ahn, D. J., Ahn, K.-D., Kim, J.-M. (2004). Micropatterning of diacetylenic liposomes on glass surfaces. Materials Science and Engineering C., 24, 157–161. doi:10.1016/j.msec.2003.09.067.

    Google Scholar 

  38. Lee, J., Kim, H.-J., Kim, J. (2008). Polydiacetylene Liposome Arrays for Selective Potassium Detection. J. Am. Chem. Soc., 130, 5010–5011. doi:10.1021/ja709996c.

    Google Scholar 

  39. Li, F., Badel, X., Linnros, J., Wasserman, G., Whittenburg, S. L., Spinu, L., et al. (2006). Fabrication and Assembly Behavior of Square Microcapsules. Adv. Mater., 18, 270–274. doi:10.1002/adma.200401411.

    Google Scholar 

  40. Kiryukhin, M. V., Gorelik, S. R., Man, S. M., Subramanian, G. S., Antipina, M. N., Low, H. Y., et al. (2013). Individually Addressable Patterned Multilayer Microchambers for Site-Specifi c Release-On-Demand. Macromol. Rapid Commu., 34, 87–93. doi:10.1002/marc.201200564.

    Google Scholar 

  41. Kiryukhin, M. V., Man, S. M., Gorelik, S. R., Subramanian, G. S., Low, H. Y., Sukhorukov, G. B. (2011). Fabrication and mechanical properties of microchambers made of polyelectrolyte multilayers. Soft Matter., 7, 6550–6556. doi:10.1039/c1sm05101f.

    Google Scholar 

  42. Kiryukhin, M. V., Man, S. M., Sadovoy, A. V., Low, H. Y., Sukhorukov, G. B. (2011). Peculiarities of Polyelectrolyte Multilayer Assembly on Patterned Surfaces. Langmuir., 27, 8430–8436. doi:10.1021/la200939p.

    Google Scholar 

  43. Kiryukhin, M. V., Man, S. M., Tonoyan, A., Low, H. Y., Sukhorukov, G. B. (2012). Adhesion of Polyelectrolyte Multilayers: Sealing and Transfer of Microchamber Array. Langmuir., 28, 5678–5686. doi:10.1021/la3003004.

    Google Scholar 

  44. Chen, H., Yu, W., Cargill, S., Patel, M. K., Bailey, C., Tonry, C., et al. (2012). Self-encapsulated hollow microstructures formed by electric field-assisted capillarity. Microfluid Nanofluid., 13, 75–82. doi:10.1007/s10404-012-0942-6.

    Google Scholar 

  45. Troitsky, V., Berzina, T., Shchukin, D., Sukhorukov, G., Erokhin, V., Fontana, M. P. (2004). Simple method of hydrophilic/hydrophobic patterning of solid surfaces and its application to self-assembling of nanoengineered polymeric capsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 245(1–3), 163–168. doi:10.1016/j.colsurfa.2004.06.034.

    Google Scholar 

  46. Rago, A. P., Chai, P. R., Morgan, J. R. (2009). Encapsulated Arrays of Self-Assembled Microtissues: An Alternative to Spherical Microcapsules. Tissue Engineering Part A., 15(2), 387–395. doi:10.1089/ten.tea.2008.0107.

    Google Scholar 

  47. Chaize, B., Nguyen, M., Ruysschaert, T., Berre, V., Trévisiol, E., Caminade, A.-M., et al. (2006). Microstructured Liposome Array. Bioconjugate Chem, 17, 245–247. doi:10.1021/bc050273p.

    Google Scholar 

  48. Horie, M., Yanagisawa, H., Sugawara, M. (2007). Fluorometric immunoassay based on pH-sensitive dye-encapsulating liposomes and gramicidin channels. Analytical Biochemistry., 369, 192–201. doi:10.1016/j.ab.2007.07.007.

    Google Scholar 

  49. Bailey, K., Bally, M., Leifert, W., Voros, J., McMurchie, T. (2009). G-protein coupled receptor array technologies: Site directed immobilisation of liposomes containing the H1-histamine or M2-muscarinic receptors. Proteomics., 9, 2052–2063. doi:10.1002/pmic.200800539.

    Google Scholar 

  50. Silin, V. I., Karlik, E. A., Ridge, K. D., Vanderah, D. J. (2006). Development of surface-based assays for transmembrane proteins: Selective immobilization of functional CCR5, a G protein-coupled receptor. Analytical Biochemistry., 349, 247–253. doi:10.1016/j.ab.2005.10.025.

    Google Scholar 

  51. Chen, X. L., & Jenekhe, S. A. (2000). Supramolecular Self-Assembly of Three-Dimensional Nanostructures and Microstructures: Microcapsules from Electroactive and Photoactive Rod-Coil-Rod Triblock Copolymers. Macromolecules., 33, 4610–4612. doi:10.1021/ma000100p.

    Google Scholar 

  52. Sun, Z., Bai, F., Wu, H., Schmitt, S. K., Boye, D. M., Fan, H. (2009). Hydrogen-Bonding-Assisted Self-Assembly: Monodisperse Hollow Nanoparticles Made Easy. J. Am. Chem. Soc., 131, 13594–13595. doi:10.1021/ja905240w.

    Google Scholar 

  53. Bally, M., Bailey, K., Sugihara, K., Grieshaber, D., Vцrцs, J., Stadler, B. (2010). Liposome and Lipid Bilayer Arrays Towards Biosensing Applications. Small., 6(22), 2481–2497. doi:10.1002/smll.201000644.

    Google Scholar 

  54. Skirtach, A. G., Volodkin, D. V., Mohwald, H. (2010). Bio-interfaces-Interaction of PLL/HA Thick Films with Nanoparticles and Microcapsules. ChemPhysChem., 11(4), 822–829. doi:10.1002/cphc.200900676.

    Google Scholar 

  55. Schmidt, S., Madaboosi, N., Uhlig, K., Köhler, D., Skirtach, A., Duschl, C., et al. (2012). Control of Cell Adhesion by Mechanical Reinforcement of Soft Polyelectrolyte Films with Nanoparticles. Langmuir., 28(18), 7249–7257. doi:10.1021/la300635z.

    Google Scholar 

  56. Delcea, M., Madaboosi, N., Yashchenok, A. M., Subedi, P., Volodkin, D. V., De Geest, B. G., et al. (2011). Anisotropic multicompartment micro- and nano-capsules produced via embedding into biocompatible PLL/HA films. Chem. Commun., 47(7), 2098–2100. doi:10.1039/C0CC04820H.

    Google Scholar 

  57. Kohler, D., Madaboosi, N., Delcea, M., Schmidt, S., De Geest, B. G., Volodkin, D. V., et al. (2012). Patchiness of Embedded Particles and Film Stiffness Control Through Concentration of Gold Nanoparticles. Adv Mater., 24(8), 1095–1100. doi:10.1002/adma.201103958.

    Google Scholar 

  58. Köhler, K., Shchukin, D. G., Möhwald, H., Sukhorukov, G. B. (2005). Thermal Behavior of Polyelectrolyte Multilayer Microcapsules. 1. The Effect of Odd and Even Layer Number. J. Phys. Chem., 109, 18250–18259. doi:10.1021/jp052208i.

    Google Scholar 

  59. Köhler, K., & Sukhorukov, G. B. (2007). Heat treatment of Polyelectrolyte Multilayer Capsules: A Versatile Method for Encapsulation. Adv. Funct. Mater., 17, 2053–2061. doi:10.1002/adfm.200600593.

    Google Scholar 

  60. Mauser, T., Dejugnat, C., Sukhorukov, G. B. (2006). Balance of Hydrophobic and Electrostatic Forces in the ph Response of Weak Polyelectrolyte Capsules. J. Phys. Chem., 110, 20246–20253. doi:10.1021/jp063502t.

    Google Scholar 

  61. Antipov, A. A., Sukhorukov, G. B., Donath, E. (2001). Sustained release properties of polyelectrolyte multilayer capsules. J. Phys. Chem., 105(12), 2281–2284. doi:10.1021/jp002184.

    Google Scholar 

  62. Dejugnat, C., & Sukhorukov, G. B. (2004). pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir., 20, 7265–7269. doi:10.1021/la049706n.

    Google Scholar 

  63. Antipov, A. A., Möhwald, H., Sukhorukov, G. B. (2003). Influence of the ionic strength on the polyelectrolyte multilayers permeability. Langmuir., 19, 2444–2448. doi:10.1021/la026101n.

    Google Scholar 

  64. Skirtach, A. G., Antipov, A. A., Shchukin, D. G., Sukhorukov, G. B. (2004). Remote Activation of Capsules Containing Ag Nanoparticles and IR Dye by Laser Light. Langmuir., 20, 6988–6992. doi:10.1021/la048873k.

    Google Scholar 

  65. Bratashov, D. N., Masic, A., Yashchenok, A. M., Bedard, M. F., Inozemtzeva, O. A., Gorin, D. A., et al. (2011). Raman imaging and photodegradation study of phthalocyanine containing microcapsules and coated particles. J. Raman Spectr., 42(10), 1901–1907. doi:10.1002/jrs.2938.

    Google Scholar 

  66. Shchukin, D. G., Gorin, D. A., Möhwald, H. (2006). Ultrasonically Induced Opening of Polyelectrolyte Microcontainers. Langmuir., 22(17), 7400–7404. doi:10.1021/la061047m.

    Google Scholar 

  67. Kolesnikova, T. A., Gorin, D. A., Fernandes, P., Kessel, S., Khomutov, G. B., Fery, A., et al. (2010). Nanocomposite microcontainers with high ultrasound sensitivity. Advanced Functional Materials., 20, 1189–1195. doi:10.1002/adfm.200902233.

    Google Scholar 

  68. Bedard, M. F., Sadasivan, S., Sukhorukov, G. B., Skirtach, A. (2009). Assembling polyelectrolytes and porphyrins into hollow capsules with laser-responsive oxidative properties. J. Mat. Chem., 19, 2226–2233. doi:10.1039/b818774f.

    Google Scholar 

  69. Gorin, D. A., Portnov, S. A., Inozemtseva, O. A., Luklinska, Z., Yashchenok, A. M., Pavlov, A. M., et al. (2008). Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. Phys. Chem. Chem. Phys., 10, 6899–6905. doi:10.1039/b809696a.

    Google Scholar 

  70. Belova, V., Gorin, D. A., Shchukin, D. G., Möhwald, H. (2010). Ultrasonic selective cavitation at patterned hydrophobic surfaces. Angew. Chem. Int. Ed., 49, 7129–7713. doi:10.1002/anie.201002069.

    Google Scholar 

  71. Belova, V., Gorin, D. A., Shchukin, D. G., Möhwald, H. (2011). Controlled Effect of Ultrasonic Cavitation on Hydrophobic/Hydrophilic Surfaces. Appl. Mater. Interfaces., 3(2), 417–425. doi:10.1021/am101006x.

    Google Scholar 

  72. Belova, V., Shchukin, D. G., Gorin, D. A., Kopyshev, A., Möhwald, H. (2011). A new approach to nucleation of cavitation bubbles at chemically modified surfaces. Phys. Chem. Chem. Phys., 13, 8015–8023. doi:10.1039/c1cp20218a.

    Google Scholar 

  73. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature reviews. Drug discovery., 4, 145–160. doi:10.1038/nrd1632.

    Google Scholar 

  74. Volodkin, D. V., Arntz, Y., Schaaf, P., Mohwald, H., Voegel, J.-C., Ball, V. (2008). Composite multilayered biocompatible polyelectrolyte films with intact liposomes: stability and triggered dye release. Soft Matter., 4, 122–130. doi:10.1039/B713563G.

    Google Scholar 

  75. Volodkin D.V., Michel M., Schaaf P., Voegel J.-C., Mohwald H., Ball V. (2008) Liposome Embedding into Polyelectrolyte Multilayers: A New Way to Create Drug Reservoirs at Solid–liquid Interfaces. In Advances in Planar Lipid Bilayers and Liposomes, Elsevier. 8:1-25. doi: 10.1016/S1554-4516(08)00201-9 DOI:10.1016/S1554-4516(08)00201-9#doilink .

  76. Volodkin, D., Schaaf, P., Mohwald, H., Voegel, J.-C., Ball, V. (2009). Effective embedding of liposomes into polyelectrolyte multilayered films. The relative importance of lipid-polyelectrolyte and interpolyelectrolyte interactions. Soft Matter., 5, 1394–1405. doi:10.1039/B815048F.

    Google Scholar 

  77. Volodkin, D. V., Ball, V., Schaaf, P., Voegel, J.-C., Mohwald, H. (2007). Complexation of phosphocholine liposomes with polylysine. Stabilization by surface coverage versus aggregation. BBA Biomembranes., 1768, 280–290. doi:10.1016/j.bbamem.2006.09.015.

    Google Scholar 

  78. Volodkin, D. V., Mohwald, H., Voegel, J.-C., Ball, V. (2007). Stabilization of negatively charged liposomes by polylysine surface coating. Drug release study. J Control Release., 117, 111–120. doi:10.1016/j.jconrel.2006.10.021.

    Google Scholar 

  79. Malcher M., Volodkin D., Heurtault B., Andre P., Schaaf P., Mohwald H., Voegel J.-C., Sokolowski A., Ball, V.; Boulmedais, F.; Frisch, B., Embedded Silver Ions-Containing Liposomes in Polyelectrolyte Multilayers: Cargos Films for Antibacterial Agents. Langmuir. 24:10209-10215. doi: 10.1021/la8014755.

  80. Volodkin D.V., Möhwald H. (2009) Drug Delivery: Polyelectrolyte Multilayers. In Encyclopedia of Surface and Colloid Science, Somasundaran, P., Ed. Taylor & Francis: London. 1:1-14. doi: 10.1081/E-ESCS-120045329

  81. Volodkin D., Skirtach A., Möhwald H. (2011) LbL Films as Reservoirs for Bioactive Molecules Bioactive Surfaces. Börner H.G., Lutz J.-F. (Eds.) Springer Berlin/Heidelberg: Adv Polm Sci.240:135-161. doi: 10.1007/12_2010_79.

  82. Volodkin, D., Skirtach, A., Madaboosi, N., Blacklock, J., von Klitzing, R., Lankenau, A., et al. (2010). IR-light triggered drug delivery from micron-sized polymer biocoatings. J Control Release., 148(1), e70–e71. doi:10.1016/j.jconrel.2010.07.031.

    Google Scholar 

  83. Volodkin, D., Skirtach, A., Möhwald, H. (2012). Bioapplications of light-sensitive polymer films and capsules assembled using the layer-by-layer technique. Polym Int., 61(5), 673–679. doi:10.1002/pi.4182.

    Google Scholar 

  84. Duncanson, W. J., Lin, T., Abate, A. R., Seiffert, S., Shah, R. K., Weitz, D. A. (2012). Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip., 12, 2135–2145. doi:10.1039/c2lc21164e.

    Google Scholar 

  85. Shah, R. K., Cheung, S. H., Rowat, A. C., Lee, D., Agresti, J. J., Utada, A. S., et al. (2008). Designer emulsions using microfluidics. Mat Today., 11(4), 18–27. doi:10.1016/S1369-7021%2808%2970053-1"\t"doilink".

    Google Scholar 

  86. Tran, T. M., Lan, F., Thompson, C. S., Abate, A. R. (2013). From tubes to drops: droplet-based microfluidics for ultrahigh-throughput biology. J. Phys. D: Appl. Phys, 46, 114004. 17 pp.

    Google Scholar 

  87. Song, H., Chen, D. L., Ismagilov, R. F. (2006). Reactions in Droplets in Microfluidic Channels. Angew. Chem. Int. Ed., 45, 7336–7356. doi:10.1002/anie.200601554.

    Google Scholar 

  88. Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A., Möhwald, H. (1998). Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed, 37, 2201–2205. doi:10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E.

    Google Scholar 

  89. Caruso, F. (2001). Nanoengineering of Particle Surfaces. Adv Mater, 13, 11–22. doi:10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N.

    Google Scholar 

  90. Peyratout, C. S., & Dahne, L. (2004). Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers. Angew Chem Int Ed, 43, 3762–3783. doi:10.1002/anie.200300568.

    Google Scholar 

  91. Delcea, M., Mohwald, H., Skirtach, A. G. (2011). Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews, 63, 730–747. doi:10.1016/j.addr.2011.03.010.

    Google Scholar 

  92. De Geest, B. G., Sukhorukov, G. B., Mohwald, H. (2009). The pros and cons of polyelectrolyte capsules in drug delivery. Expert Opinion on Drug Delivery, 6, 613–624. doi:10.1517/17425240902980162.

    Google Scholar 

  93. Weissleder, R. (2001). A clearer vision for in vivo imaging. Nat Biotech, 19, 316–317. doi:10.1038/86684.

    Google Scholar 

  94. Skirtach, A. G., Javier, A. M., Kreft, O., Kohler, K., Alberola, A. P., et al. (2006). Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Ed, 45, 4612–4617. doi:10.1002/anie.200504599.

    Google Scholar 

  95. Richardson, T. P., Peters, M. C., Ennett, A. B., Mooney, D. J. (2001). Polymeric system for dual growth factor delivery. Nat Biotech, 19, 1029–1034. doi:10.1038/nbt1101-1029.

    Google Scholar 

  96. Lee, K., Silva, E. A., Mooney, D. J. (2011). Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of the Royal Society Interface, 8, 153–170. doi:10.1098/rsif.2010.0223.

    Google Scholar 

  97. Boudou, T., Crouzier, T., Ren, K., Blin, G., Picart, C. (2010). Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications. Adv Mater, 22, 441–467. doi:10.1002/adma.200901327.

    Google Scholar 

  98. Tang, Z., Wang, Y., Podsiadlo, P., Kotov, N. A. (2006). Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Adv Mater, 18, 3203–3224. doi:10.1002/adma.200600113.

    Google Scholar 

  99. Lavalle, P., Voegel, J. C., Vautier, D., Senger, B., Schaaf, P., et al. (2011). Dynamic Aspects of Films Prepared by a Sequential Deposition of Species: Perspectives for Smart and Responsive Materials. Adv Mater, 23, 1191–1221. doi:10.1002/adma.201003309.

    Google Scholar 

  100. Wang, Y. J., Hosta-Rigau, L., Lomas, H., Caruso, F. (2011). Nanostructured polymer assemblies formed at interfaces: applications from immobilization and encapsulation to stimuli-responsive release. Phys Chem Chem Phys, 13, 4782–4801. doi:10.1039/c0cp02287j.

    Google Scholar 

  101. Volodkin, D., Skirtach, A., Mohwald, H. (2011). LbL Films as Reservoirs for Bioactive Molecules. In H. G. Borner & J. F. Lutz (Eds.), Bioactive Surfaces (pp. 135–161). Berlin: Springer-Verlag Berlin. doi:10.1007/12_2010_79.

    Google Scholar 

  102. Sukhishvili, S. A. (2005). Responsive polymer films and capsules via layer-by-layer assembly. Curr Opin Colloid, Interface Sci, 10, 37–44. doi:10.1016/j.cocis.2005.05.001.

    Google Scholar 

  103. Crouzier, T., Ren, K., Nicolas, C., Roy, C., Picart, C. (2009). Layer-By-Layer Films as a Biomimetic Reservoir for rhBMP-2 Delivery: Controlled Differentiation of Myoblasts to Osteoblasts. Small, 5, 598–608. doi:10.1002/smll.200800804.

    Google Scholar 

  104. Ren, K., Crouzier, T., Roy, C., Picart, C. (2008). Polyelectrolyte Multilayer Films of Controlled Stiffness Modulate Myoblast Cell Differentiation. Adv Funct Mater, 18, 1–12. doi:10.1002/adfm.200701297.

    Google Scholar 

  105. Volodkin, D., Skirtach, A., Madaboosi, N., Blacklock, J., von Klitzing, R., et al. (2010). IR-light triggered drug delivery from micron-sized polymer biocoatings. J Controlled release, 148, e70–e71. doi:10.1016/j.jconrel.2010.07.031.

    Google Scholar 

  106. Volodkin, D. V., Madaboosi, N., Blacklock, J., Skirtach, A. G., Mohwald, H. (2009). Surface-Supported Multilayers Decorated with Bio-active Material Aimed at Light-Triggered Drug Delivery. Langmuir, 25, 14037–14043. doi:10.1021/la9015433.

    Google Scholar 

  107. Volodkin, D., Skirtach, A., Möhwald, H. (2012). Bioapplications of light-sensitive polymer films and capsules assembled using the layer-by-layer technique. Polym Int, 61, 673–679. doi:10.1002/pi.4182.

    Google Scholar 

  108. Skirtach, A. G., Karageorgiev, P., Bedard, M. F., Sukhorukov, G. B., Mohwald, H. (2008). Reversibly permeable nanomembranes of polymeric microcapsules. J Am Chem Soc, 130, 11572–11573. doi:10.1021/ja8027636.

    Google Scholar 

  109. Radt, B., Smith, T. A., Caruso, F. (2004). Optically Addressable Nanostructured Capsules. Advanced Materials, 16, 2184–2189. doi:10.1002/adma.200400920.

    Google Scholar 

  110. Skirtach, A. G., Dejugnat, C., Braun, D., Susha, A. S., Rogach, A. L., et al. (2005). The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano Lett, 5, 1371–1377. doi:10.1021/nl050693n.

    Google Scholar 

  111. Pechenkin, M. A., Mohwald, H., Volodkin, D. V. (2012). pH- and salt-mediated response of layer-by-layer assembled PSS/PAH microcapsules: fusion and polymer exchange. Soft Matter, 8, 8659–8665. doi:10.1039/C2SM25971K.

    Google Scholar 

  112. Madaboosi, N., Uhlig, K., Jäger, M. S., Möhwald, H., Duschl, C., et al. (2012). Microfluidics as A Tool to Understand the Build-Up Mechanism of Exponential-Like Growing Films. Macromolecular Rapid Communications, 33, 1775–1779. doi:10.1002/marc.201200353.

    Google Scholar 

  113. Madaboosi, N., Uhlig, K., Schmidt, S., Jager, M. S., Mohwald, H., et al. (2012). Microfluidics meets soft layer-by-layer films: selective cell growth in 3D polymer architectures. Lab on a Chip, 12, 1434–1436. doi:10.1039/C2LC40058H.

    Google Scholar 

  114. Üzüm, C., Hellweg, J., Madaboosi, N., Volodkin, D. V., von Klitzing, R. (2012). Growth behaviour and mechanical properties of PLL/HA multilayer films studied by AFM. Beilstein J Nanotechnol, 3, 778–788. doi:10.3762/bjnano.3.87.

    Google Scholar 

  115. Jourdainne, L., Lecuyer, S., Arntz, Y., Picart, C., Schaaf, P., et al. (2008). Dynamics of poly(L-lysine) in hyaluronic acid/poly(L-lysine)multilayer films studied by fluorescence recovery after pattern photobleaching. Langmuir, 24, 7842–7847. doi:10.1021/la7040168.

    Google Scholar 

  116. Wu, G., Mikhailovsky, A., Khant, H. A., Fu, C., Chiu, W., et al. (2008). Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells. J Am Chem Soc, 130, 8175–8177. doi:10.1021/ja802656d.

    Google Scholar 

  117. Chen, Y. J., Bose, A., Bothun, G. D. (2010). Controlled Release from Bilayer-Decorated Magnetoliposomes via Electromagnetic Heating. Acs Nano, 4, 3215–3221. doi:10.1021/nn100274v.

    Google Scholar 

  118. An, X. Q., Zhang, F., Zhu, Y. Y., Shen, W. G. (2010). Photoinduced drug release from thermosensitive AuNPs-liposome using a AuNPs-switch. Chemical Communications, 46, 7202–7204. doi:10.1039/c0cc03142a.

    Google Scholar 

  119. Urban, A. S., Pfeiffer, T., Fedoruk, M., Lutich, A. A., Feldmann, J. (2011). Single-Step Injection of Gold Nanoparticles through Phospholipid Membranes. Acs Nano, 5, 3585–3590. doi:10.1021/nn201132a.

    Google Scholar 

  120. Leung, S. J., Kachur, X. M., Bobnick, M. C., Romanowski, M. (2011). Wavelength-Selective Light-Induced Release from Plasmon Resonant Liposomes. Advanced Functional Materials, 21, 1113–1121. doi:10.1002/adfm.201002373.

    Google Scholar 

  121. Volodkin, D. V., Ball, V., Voegel, J.-C., Möhwald, H., Dimova, R., et al. (2007). Control of the Interaction between membranes and vesicles: Adhesion, Fusion and Release of Dyes. Colloids Surf A, 303, 89–96. doi:10.1016/j.colsurfa.2007.03.04.

    Google Scholar 

  122. Volodkin, D. V., Arntz, Y., Schaaf, P., Mohwald, H., Voegel, J.-C., et al. (2008). Composite multilayered biocompatible polyelectrolyte films with intact liposomes: stability and triggered dye release. Soft Matter, 4, 122–130. doi:10.1039/B713563G.

    Google Scholar 

  123. Malcher, M., Volodkin, D., Heurtault, B., Andre, P., Schaaf, P., et al. (2008). Embedded Silver Ions-Containing Liposomes in Polyelectrolyte Multilayers: Cargos Films for Antibacterial Agents. Langmuir, 24, 10209–10215. doi:10.1021/la8014755.

    Google Scholar 

  124. Volodkin, D. V., Skirtach, A. G., Mohwald, H. (2009). Near-IR Remote Release from Assemblies of Liposomes and Nanoparticles. Angew Chem Int Ed, 48, 1807–1809. doi:10.1002/anie.200805572.

    Google Scholar 

  125. Volodkin, D. V., Schmidt, S., Fernandes, P., Larionova, N. I., Sukhorukov, G. B., et al. (2012). One-Step Formulation of Protein Microparticles with Tailored Properties: Hard Templating at Soft Conditions. Adv Funct Mater, 22, 1914–1922. doi:10.1002/adfm.201103007.

    Google Scholar 

  126. Schmidt, S., Behra, M., Uhlig, K., Madaboosi, N., Hartmann, L., et al. (2013). Mesoporous Protein Particles Through Colloidal CaCO3 Templates. Adv Funct Mater, 23, 116–123. doi:10.1002/adfm.201201321.

    Google Scholar 

  127. Schmidt, S., & Volodkin, D. (2013). Microparticulate biomolecules by mild CaCO3 templating. J Mater Chem B, 1, 1210–1218. doi:10.1039/C2TB00344A.

    Google Scholar 

  128. Volodkin D. (2014) CaCO3 templated micro-beads and -capsules for bioapplications. Advances in Colloid and Interface Science(in print). doi: 10.1016/j.cis.2013.11.011.

  129. Schmidt S., Uhlig K., Duschl C., Volodkin D. (2014) Stability and Cell Uptake of Calcium Carbonate Templated Insulin Microparticles Acta Biomaterialia (in print). doi: 10.1016/j.actbio.2013.11.011.

  130. Volodkin, D. V., Balabushevitch, N. G., Sukhorukov, G. B., Larionova, N. I. (2003). Inclusion of proteins into polyelectrolyte microparticles by alternative adsorption of polyelectrolytes on protein aggregates. Biochemistry (Moscow), 68, 236–241. doi:10.1023/A:1022661731606.

    Google Scholar 

  131. Balabushevich, N. G., Pechenkin, M. A., Shibanova, E. D., Volodkin, D. V., Mikhalchik, E. V. (2013). Multifunctional Polyelectrolyte Microparticles for Oral Insulin Delivery. Macromolecular Bioscience, 13, 1379–1388. doi:10.1002/mabi.201300207.

    Google Scholar 

  132. Uhlig, K., Madaboosi, N., Schmidt, S., Jager, M. S., Rose, J., et al. (2012). 3d localization and diffusion of proteins in polyelectrolyte multilayers. Soft Matter, 8, 11786–11789. doi:10.1039/C2SM26500A.

    Google Scholar 

Download references

Acknowledgments

The reported study was partially supported by RFBR (research project number 12-03-33088) and by the individual grant of Foundation for Assistance to Small Innovative Enterprises in Scientific and Technological Sphere under the program “U.M.N.I.K.” (project number 17259). D.V. Volodkin thanks to Alexander von Humboldt Foundation for support (Sofja Kovalevskaja Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena S. Sergeeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergeeva, A.S., Gorin, D.A. & Volodkin, D.V. Polyelectrolyte Microcapsule Arrays: Preparation and Biomedical Applications. BioNanoSci. 4, 1–14 (2014). https://doi.org/10.1007/s12668-013-0121-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0121-6

Keywords

Navigation