Skip to main content

Advertisement

Log in

Composite Conjugated Polymer/Fullerene Nanoparticles as Sensitizers in Photodynamic Therapy for Cancer

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The fabrication and study of composite conjugated polymer nanoparticles doped with fullerene for application in photodynamic therapy (PDT) is reported. The nanoparticles are not intrinsically cytotoxic and show specificity towards cancer cells without surface modification. The high absorption cross-section and efficient charge transfer from conjugated polymer to fullerene in the composite nanoparticles results in only moderate light levels being necessary for PDT. The PDT scheme was tested in vitro for MDA-MB-231 (human breast cancer), A549 (human lung cancer), and OVCAR3 (human ovarian cancer) cell lines. While the treatment was observed to be only marginally effective for the MDA-MB-231 cell line, 60 % and complete cell death was observed for the A549 and OVCAR3 cell lines, respectively. Differences in PDT efficiency are attributed to the difference in nanoparticle uptake between these cell lines, and is potentially related to differences in metabolic rate. Through live/dead cell staining apoptotic cell death was observed for OVCAR3. This is a promising finding for potential development of treatment for ovarian cancer by the PDT scheme discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar, A., Cascarini, L., McCaul, J. A., Kerawala, C. J., Coombes, D., Godden, D., et al. (2013). How should we manage oral leukoplakia? British Journal of Oral and Maxillofacial Surgery, 51(5), 377–383. doi:10.1016/j.bjoms.2012.10.018.

    Article  Google Scholar 

  2. Milovanovic, J., Djukic, V., Milovanovic, A., Jotic, A., Banko, B., Jesic, S., et al. (2013). Clinical outcome of early glottic carcinoma in Serbia. Auris, Nasus, Larynx, 40(4), 394–399. doi:10.1016/j.anl.2012.11.013.

    Article  Google Scholar 

  3. Moore, E. J., & Hinni, M. L. (2013). Critical review: Transoral laser microsurgery and robotic-assisted surgery for oropharynx cancer including human papillomavirus-related cancer. International Journal of Radiation Oncology, Biology, and Physics, 85(5), 1163–1167. doi:10.1016/j.ijrobp.2012.08.033.

    Article  Google Scholar 

  4. No, D., Osterberg, E. C., Otto, B., Naftali, I., Choi, B. (2013). Evaluation of continence following 532 nm laser prostatectomy for patients previously treated with radiation therapy or brachytherapy. Lasers in Surgery and Medicine, 45(6), 358–361. doi:10.1002/lsm.22152.

    Article  Google Scholar 

  5. Rosch, T. (2012). Progress in endoscopy: areas of current interest and topics to watch out for. Endoscopy, 44(12), 1148–1157. doi:10.1055/s-0032-1325994.

    Article  Google Scholar 

  6. Kalbasi, A., June, C. H., Haas, N., Vapiwala, N. (2013). Radiation and immunotherapy: a synergistic combination. Journal of Clinical Investigation, 123(7), 2756–2763. doi:10.1172/jci69219.

    Article  Google Scholar 

  7. Suneja, G., Poorvu, P. D., Hill-Kayser, C., Lustig, R. A. (2013). Acute toxicity of proton beam radiation for pediatric central nervous system malignancies. Pediatric Blood & Cancer, 60(9), 1431–1436. doi:10.1002/pbc.24554.

    Article  Google Scholar 

  8. Dent, S., Oyan, B., Honig, A., Mano, M., Howell, S. (2013). HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treatment Reviews, 39(6), 622–631. doi:10.1016/j.ctrv.2013.01.002.

    Article  Google Scholar 

  9. Heinemann, V., Douillard, J. Y., Ducreux, M., Peeters, M. (2013). Targeted therapy in metastatic colorectal cancer—an example of personalised medicine in action. Cancer Treatment Reviews, 39(6), 592–601. doi:10.1016/j.ctrv.2012.12.011.

    Article  Google Scholar 

  10. Verbrugghe, M., Verhaeghe, S., Lauwaert, K., Beeckman, D., Van Hecke, A. (2013). Determinants and associated factors influencing medication adherence and persistence to oral anticancer drugs: a systematic review. Cancer Treatment Reviews, 39(6), 610–621. doi:10.1016/j.ctrv.2012.12.014.

    Article  Google Scholar 

  11. Mountzios, G., Soultati, A., Pectasides, D., Pectasides, E., Dimopoulos, M. A., Papadimitriou, C. A. (2013). Developments in the systemic treatment of metastatic cervical cancer. Cancer Treatment Reviews, 39(5), 430–443. doi:10.1016/j.ctrv.2012.05.009.

    Article  Google Scholar 

  12. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1), 47–95.

    Google Scholar 

  13. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84. doi:10.1016/j.biocel.2006.07.001.

    Article  Google Scholar 

  14. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1–40. doi:10.1016/j.cbi.2005.12.009.

    Article  Google Scholar 

  15. Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review of Genetics, 39, 359–407. doi:10.1146/annurev.genet.39.110304.095751.

    Article  Google Scholar 

  16. Baynes, J. W., & Thorpe, S. R. (1999). Role of oxidative stress in diabetic complications—a new perspective on an old paradigm. Diabetes, 48(1), 1–9. doi:10.2337/diabetes.48.1.1.

    Article  Google Scholar 

  17. Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S., Floyd, R. A. (2000). Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology and Medicine, 28(10), 1456–1462. doi:10.1016/S0891-5849(00)00252-5.

    Article  Google Scholar 

  18. Zhou, H., Liu, X., Liu, L., Yang, Z., Zhang, S., Tang, M., et al. (2009). Oxidative stress and apoptosis of human brain microvascular endothelial cells induced by free fatty acids. Journal of International Medical Research, 37(6), 1897–1903.

    Article  Google Scholar 

  19. Nogueira, V., Park, Y., Chen, C.-C., Xu, P.-Z., Chen, M.-L., Tonic, I., et al. (2008). Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell, 14(6), 458–470. doi:10.1016/j.ccr.2008.11.003.

    Article  Google Scholar 

  20. Huang, P., Trachootham, D., Alexandre, J. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Reviews Drug Discovery, 8(7), 579–591. doi:10.1038/nrd2803.

    Article  Google Scholar 

  21. Huang, P., Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell, 10(3), 241–252. doi:10.1016/j.ccr.2006.08.009.

    Article  Google Scholar 

  22. Konan, Y. N., Gurny, R., Allemann, E. (2002). State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 66(2), 89–106. doi:10.1016/s1011-1344(01)00267-6.

    Article  Google Scholar 

  23. Luan, L., Ding, L., Zhang, W., Shi, J., Yu, X., Liu, W. (2013). A naphthalocyanine based near-infrared photosensitizer: synthesis and in vitro photodynamic activities. Bioorganic & Medicinal Chemistry Letters, 23(13), 3775–3779. doi:10.1016/j.bmcl.2013.04.093.

    Article  Google Scholar 

  24. Lukyanets, E. A. (1999). Phthalocyanines as photosensitizers in the photodynamic therapy of cancer. Journal of Porphyrins Phthalocyanines, 3(6–7), 424–432. doi:10.1002/(Sici)1099-1409.

    Article  Google Scholar 

  25. da Silva, A. R., Ribeiro, J. N., Rettori, D., Jorge, R. A. (2008). Type II photooxidation mechanism of biomolecules using chloro(5,10,15,20-tetraphenylporphyrinato)indium(II) as a photosensitizer. Journal of the Brazilian Chemical Society, 19(7), 1311–1320.

    Article  Google Scholar 

  26. Dolmans, D. E. J. G. J., Fukumura, D., Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380–387. doi:10.1038/nrc1071.

    Article  Google Scholar 

  27. Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., et al. (1998). Photodynamic therapy. Journal of the National Cancer Institute, 90(12), 889–905. doi:10.1093/jnci/90.12.889.

    Article  Google Scholar 

  28. Kim, S., Ohulchanskyy, T. Y., Pudavar, H. E., Pandey, R. K., Prasad, P. N. (2007). Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. Journal of the American Chemical Society, 129(9), 2669–2675. doi:10.1021/ja0680257.

    Article  Google Scholar 

  29. Shirasu, N., Nam, S. O., Kuroki, M. (2013). Tumor-targeted photodynamic therapy. Anticancer Research, 33(7), 2823–2831.

    Google Scholar 

  30. Lim, C.-K., Heo, J., Shin, S., Jeong, K., Seo, Y. H., Jang, W.-D., et al. (2013). Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Letters, 334(2), 176–187. doi:10.1016/j.canlet.2012.09.012.

    Article  Google Scholar 

  31. Tian, G., Ren, W., Yan, L., Jian, S., Gu, Z., Zhou, L., et al. (2012). Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small, 9(11), 1929–1938. doi:10.1002/smll.201201437.

    Article  Google Scholar 

  32. Bridot, J. L., Faure, A. C., Laurent, S., Riviere, C., Billotey, C., Hiba, B., et al. (2007). Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. Journal of the American Chemical Society, 129(16), 5076–5084. doi:10.1021/ja068356j.

    Article  Google Scholar 

  33. Cheon, J., & Lee, J. H. (2008). Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Accounts Chemistry Research, 41(12), 1630–1640. doi:10.1021/ar800045c.

    Article  Google Scholar 

  34. Kim, J., Piao, Y., Hyeon, T. (2009). Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews, 38(2), 372–390. doi:10.1039/b709883a.

    Article  Google Scholar 

  35. Mulder, W. J. M., Strijkers, G. J., Van Tilborg, G. A. F., Cormode, D. P., Fayad, Z. A., Nicolay, K. (2009). Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Accounts Chemistry Research, 42(7), 904–914. doi:10.1021/ar800223c.

    Article  Google Scholar 

  36. Chen, J.-Y., Lee, Y.-M., Zhao, D., Mak, N.-K., Wong, R. N.-S., Chan, W.-H., et al. (2010). Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochemistry and Photobiology, 86(2), 431–437. doi:10.1111/j.1751-1097.2009.00652.x.

    Article  Google Scholar 

  37. Chou, K. L., Meng, H., Cen, Y., Li, L., Chen, J. Y. (2013). Dopamine-quantum dot conjugate: a new kind of photosensitizers for photodynamic therapy of cancers. Journal of Nanoparticle Research, 15(1), 9. doi:10.1007/s11051-012-1348-9.

    Article  Google Scholar 

  38. Ito, S., Miyoshi, N., Degraff, W. G., Nagashima, K., Kirschenbaum, L. J., Riesz, P. (2009). Enhancement of 5-aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radical Research, 43(12), 1214–1224. doi:10.3109/10715760903271249.

    Article  Google Scholar 

  39. Xue, C., Wu, J., Lan, F., Liu, W., Yang, X., Zeng, F., et al. (2010). Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. Journal of Nanoscience and Nanotechnology, 10(12), 8500–8507. doi:10.1166/jnn.2010.2682.

    Article  Google Scholar 

  40. Liu, L., Xiao, L., Cao, C. H. (2013). Novel magnetic-fluorescent CS-Fe3O4@ZnS:Mn/ZnS (core/shell) nanoparticles: preparation, characterization and damage to bovine serum albumin under UV irradiation. Materials Chemistry and Physics, 140(2–3), 575–582. doi:10.1016/j.matchemphys.2013.04.007.

    Article  Google Scholar 

  41. Zeng, L. Y., Ren, W. Z., Xiang, L. C., Zheng, J. J., Chen, B., Wu, A. G. (2013). Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nanoscale, 5(5), 2107–2113. doi:10.1039/c3nr33978e.

    Article  Google Scholar 

  42. Wang, F., Chen, X. L., Zhao, Z. X., Tang, S. H., Huang, X. Q., Lin, C. H., et al. (2011). Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. Journal of Materials Chemistry, 21(30), 11244–11252. doi:10.1039/c1jm10329f.

    Article  Google Scholar 

  43. Perrier, M., Gary-Bobo, M., Lartigue, L., Brevet, D., Morere, A., Garcia, M., et al. (2013). Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells. Journal of Nanoparticle Research, 15(5), 17. doi:10.1007/S11051-013-1602-9.

    Article  Google Scholar 

  44. Huang, P., Lin, J., Wang, S., Zhou, Z., Li, Z., Wang, Z., et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials, 34(19), 4643–4654. doi: 10.1016/j.biomaterials.2013.02.063.

  45. Ohulchanskyy, T. Y., Roy, I., Goswami, L. N., Chen, Y., Bergey, E. J., Pandey, R. K., et al. (2007). Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Letters, 7(9), 2835–2842. doi:10.1021/nl0714637.

    Article  Google Scholar 

  46. Tao, X., Yang, Y. J., Liu, S., Zheng, Y. Z., Fu, J., Chen, J. F. (2013). Poly(amidoamine) dendrimer-grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy. Acta Biomaterialia, 9(5), 6431–6438. doi:10.1016/j.actbio.2013.01.028.

    Article  Google Scholar 

  47. Cohen, BA., & Bergkvist, M. Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. Journal of Photochemistry and Photobiology B: Biology, 121, 67–74. doi:10.1016/j.jphotobiol.2013.02.013.

  48. Ferreira, D. M., Saga, Y. Y., Aluicio-Sarduy, E., Tedesco, A. C. Chitosan nanoparticles for melanoma cancer treatment by photodynamic therapy and electrochemotherapy using aminolevulinic acid derivatives. Current Medicinal Chemistry, 20(14), 1904–1911.

  49. Grimland, J. L., Wu, C., Ramoutar, R. R., Brumaghim, J. L., McNeill, J. Photosensitizer-doped conjugated polymer nanoparticles with high cross-sections for one- and two-photon excitation. Nanoscale, 3(4), 1451–1455.

  50. Shen, X., Li, L., Wu, H., Yao, S. Q., Xu, Q. H. (2011). Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells. Nanoscale, 3(12), 5140–5146. doi:10.1039/c1nr11104c.

    Article  Google Scholar 

  51. Gao, D., Agayan, R. R., Xu, H., Philbert, M. A., Kopelman, R. (2006). Nanoparticles for two-photon photodynamic therapy in living cells. Nano Letters, 6(11), 2383–2386. doi:10.1021/nl0617179.

    Article  Google Scholar 

  52. Sariciftci, N. S., Smilowitz, L., Heeger, A. J., Wudl, F. (1992). Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258(5087), 1474–1476. doi:10.1126/science.258.5087.1474.

    Article  Google Scholar 

  53. Park, S. H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J. S., et al. (2009). Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nature Photonics, 3(5), 297–302. doi:10.1038/nphoton.2009.69.

    Article  Google Scholar 

  54. Sperandio, F. F., Sharma, S. K., Wang, M., Jeon, S., Huang, Y. Y., Dai, T. H., et al. (2013). Photoinduced electron-transfer mechanisms for radical-enhanced photodynamic therapy mediated by water-soluble decacationic C-70 and C84O2 fullerene derivatives. Nanomedicine-Nanotechnology Biology and Medicine, 9(4), 570–579. doi:10.1016/j.nano.2012.09.005.

    Article  Google Scholar 

  55. Fan, J. Q., Fang, G., Zeng, F., Wang, X. D., Wu, S. Z. (2013). Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small, 9(4), 613–621. doi:10.1002/smll.201201456.

    Article  Google Scholar 

  56. Grynyuk, I., Grebinyk, S., Prylutska, S., Mykhailova, A., Franskevich, D., Matyshevska, O., et al. (2013). Photoexcited fullerene C-60 disturbs prooxidant–antioxidant balance in leukemic L1210 cells. Materialwissenschaft und Werkstofftechnik, 44(2–3), 139–143. doi:10.1002/mawe.201300105.

    Article  Google Scholar 

  57. Liu, X. M., Zheng, M., Kong, X. G., Zhang, Y. L., Zeng, Q. H., Sun, Z. C., et al. (2013). Separately doped upconversion-C-60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chemical Communications, 49(31), 3224–3226. doi:10.1039/c3cc41013g.

    Article  Google Scholar 

  58. Trpkovic, A., Todorovic-Markovic, B., Trajkovic, V. (2012). Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Archives of Toxicology, 86(12), 1809–1827. doi:10.1007/s00204-012-0859-6.

    Article  Google Scholar 

  59. Chen, Z. Y., Ma, L. J., Liu, Y., Chen, C. Y. (2012). Applications of functionalized fullerenes in tumor theranostics. Theranostics, 2(3), 238–250. doi:10.7150/thno.3509.

    Article  MathSciNet  Google Scholar 

  60. Tenery, D., Worden, J. G., Hu, Z., Gesquiere, A. J. (2009). Single particle spectroscopy on composite MEH-PPV/PCBM nanoparticles. Journal of Luminescence, 129(5), 423–429. doi:10.1016/j.jlumin.2008.11.009.

    Article  Google Scholar 

  61. Gratton, S. E. A., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., et al. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11613–11618. doi:10.1073/pnas.0801763105.

    Article  Google Scholar 

  62. Huhn, D., Kantner, K., Geidel, C., Brandholt, S., De Cock, I., Soenen, S. J. H., et al. (2013). Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano, 7(4), 3253–3263. doi:10.1021/nn3059295.

    Article  Google Scholar 

  63. Xu, P. S., Van Kirk, E. A., Zhan, Y. H., Murdoch, W. J., Radosz, M., Shen, Y. Q. (2007). Targeted charge-reversal nanoparticles for nuclear drug delivery. Angewandten Chemistry-International Editor, 46(26), 4999–5002. doi:10.1002/anie.200605254.

    Article  Google Scholar 

  64. Gao, H. J., Shi, W. D., Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9469–9474. doi:10.1073/pnas.0503879102.

    Article  Google Scholar 

  65. Lerch, S., Dass, M., Musyanovych, A., Landfester, K., Mailander, V. (2013). Polymeric nanoparticles of different sizes overcome the cell membrane barrier. European Journal of Pharmaceutics and Biopharmaceutics, 84(2), 265–274. doi:10.1016/j.ejpb.2013.01.024.

    Article  Google Scholar 

  66. Tang, L., Gabrielson, N. P., Uckun, F. M., Fan, T. M., Cheng, J. J. (2013). Size-dependent tumor penetration and in vivo efficacy of monodisperse drug-silica nanoconjugates. Molecular Pharmaceutics, 10(3), 883–892. doi:10.1021/mp300684a.

    Article  Google Scholar 

  67. Wang, J., Wang, D. L., Moses, D., Heeger, A. J. (2001). Dynamic quenching of 5-(2 '-ethyl-hexyloxy)-p-phenylene vinylene (MEH-PPV) by charge transfer to a C-60 derivative in solution. Journal of Applied Polymer Science, 82(10), 2553–2557. doi:10.1002/app.2106.

    Article  Google Scholar 

  68. Hu, Z. J., & Gesquiere, A. J. (2009). PCBM concentration dependent morphology of P3HT in composite P3HT/PCBM nanoparticles. Chemical Physics Letters, 476(1–3), 51–55. doi:10.1016/j.cplett.2009.05.066.

    Article  Google Scholar 

  69. Zhang, Y., Yang, M., Portney, N. G., Cui, D. X., Budak, G., Ozbay, E., et al. (2008). Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomedical Microdevices, 10(2), 321–328. doi:10.1007/s10544-007-9139-2.

    Article  Google Scholar 

  70. Toffoli, G., Cernigoi, C., Russo, A., Gallo, A., Bagnoli, M., Boiocchi, M. (1997). Overexpression of folate binding protein in ovarian cancers. International Journal of Cancer, 74(2), 193–198. doi:10.1002/(SICI)1097-0215.

    Article  Google Scholar 

  71. Ross, J. F., Chaudhuri, P. K., Ratnam, M. (1994). Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer, 73(9), 2432–2443. doi:10.1002/1097-0142.

    Article  Google Scholar 

  72. Schumacker, P. T. (2006). Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell, 10(3), 175–176. doi:10.1016/j.ccr.2006.08.015.

    Article  Google Scholar 

  73. Parker, N., Turk, M. J., Westrick, E., Lewis, J. D., Low, P. S., Leamon, C. P. (2005). Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Analytical Biochemistry, 338(2), 284–293. doi:10.1016/j.ab.2004.12.026.

    Article  Google Scholar 

  74. Zhao, F., Zhao, Y., Liu, Y., Chang, X., Chen, C., Zhao, Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 7(10), 1322–1337. doi: 10.1002/smll.201100001

  75. Kim, J.-S., Yoon, T.-J., Yu, K.-N., Noh, M. S., Woo, M., Kim, B.-G., et al. (2006). Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. Journal of Veterinary Science, 7(4), 321–326. doi:10.4142/jvs.2006.7.4.321.

    Article  Google Scholar 

  76. Fretz, M. M., Koning, G. A., Mastrobattista, A., Jiskoot, W., Storm, G. (2004). OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochimica Et Biophysica Acta-Biomembranes, 1665(1–2), 48–56. doi:10.1016/j.bbamem.2004.06.022.

    Article  Google Scholar 

  77. Chen, N. Y., Lai, H. H., Hsu, T. H., Lin, F. Y., Chen, J. Z., Lo, H. C. (2008). Induction of apoptosis in human lung carcinoma A549 epithelial cells with an ethanol extract of Tremella mesenterica. Bioscience, Biotechnology, and Biochemistry, 72(5), 1283–1289. doi:10.1271/bbb.70773.

    Article  Google Scholar 

  78. Fan, T.-J., Han, L.-H., Cong, R.-S., Liang, J. (2005). Caspase family proteases and apoptosis. Acta Biochimica et Biophysica Sinica, 37(11), 719–727. doi:10.1111/j.1745-7270.2005.00108.x.

    Article  Google Scholar 

  79. Pasquini, L., Pettruci, E., Riccioni, R., Petronella, A., Testa, U. (2006). Sensitivity and resistance of human cancer cells to TRAIL: mechanisms and therapeutical perspectives. Cancer Therapy, 4, 47–72.

    Google Scholar 

  80. Brown, J. M., & Attardi, L. D. (2005). The role of apoptosis in cancer development and treatment response. Nature Reviews Cancer, 5(3), 231–237. doi:10.1038/nrc1560.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Science Foundation (NSF) for financial support of this work through a CAREER award (CBET-0746210) and through award CBET-1159500. We would like to thank Dr. Turkson (Univ. of Hawaii Cancer Center) and Dr. Altomare’s (Univ. of Central Florida College of Medicine) for assistance with cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre J. Gesquiere.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1810 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doshi, M., Treglown, K., Copik, A. et al. Composite Conjugated Polymer/Fullerene Nanoparticles as Sensitizers in Photodynamic Therapy for Cancer. BioNanoSci. 4, 15–26 (2014). https://doi.org/10.1007/s12668-013-0114-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0114-5

Keywords

Navigation