Skip to main content

Advertisement

Log in

Silver Nanoparticles Nanocarriers, Synthesis and Toxic Effect on Cervical Cancer Cell Lines

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have been suggested as a potential tool for the anticancer treatment, but their pharmacological effect has not been tested in vivo because of their high reactivity and adverse effects. In this study, we developed AgNPs of 5 ± 2 nm of diameter through the chemical reduction of silver nitrate (AgNO3) with dextrose, employing gelatin as a surfactant agent, and encapsulated them in nanocarriers with a biocompatible surface based on polyethylene glycol through a modification of the emulsion solvent-evaporation technique. AgNPs nanocarriers (AgNPs-NT) showed diameters between 30 nm and 120 nm in dry samples and from 40 nm to 250 nm in aqueous solution. Different doses of free and encapsulated AgNPs were evaluated in vitro on the cervical cancer-derived cell lines HeLa and CaSki, by flow cytometry studies at 24 h, employing propidium iodide (PI) and carboxyfluorescein diacetate succinimidyl ester (CFSE) as reporter molecules. Both free and encapsulated AgNPs were toxic for both cell lines, inducing important decrements on the cell viability compared with cisplatin (PC, 0.250 mM) and the negative control (NCtrl) comprising only the cell culture media, the vehicle of the AgNPs (0.360 mM), and the vehicle of the AgNPs-NT (1.089 mM). In both cases (HeLa and CaSki cells), AgNPs-NT seem to be less effective than free AgNPs, but this AgNPs-NT had a biocompatible surface, adequate size, and high toxicity observed in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruddon, R. (2007). Cancer biology (4th ed., p. 4). New York: Oxford University Press.

    Google Scholar 

  2. World Health Organization (2012). Cancer Fact sheet No. 297, http://www.who.int/mediacentre/factsheets/fs297/en/index.html (accessed April 24, 2012).

  3. GLOBOCAN (2008). Worldwide: IARC Cancer Base No. 10. Lyon, France: International Agency for Research on Cancer, http://globocan.iarc.fr (accessed July 25, 2012).

  4. Nie, S., Xing, Y., Kim, J., Simons, J. W. (2007). Nanotechnology applications in cancer. Annual Review of Biomedical Engineering, 9(12), 1–12. 32.

    Google Scholar 

  5. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Tapia, J., Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

    Article  Google Scholar 

  6. AshaRani, P. V., Mun, G. L., Hande, M. P., Valivaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 270–290.

    Article  Google Scholar 

  7. Wu, Q., Cao, H., Luan, Q., Zhang, J., Wang, Z., Warner, J. H., Watt, A. A. R. (2008). Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorganic Chemistry, 47, 5882–5888.

    Article  Google Scholar 

  8. Cha, k., Hong, H., Choi, Y., Lee, M., Park, J., Chae, H. K., Ryu, G., Myung, H. (2008). Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnology Letters, 30, 1893–1899.

    Article  Google Scholar 

  9. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J., Hong, Y. (2008). DNA damage response to different surface chemestry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 233, 404.

    Article  Google Scholar 

  10. Arora, S., Jain, J., Rajwade, J. M., Paknikar, K. M. (2008). Cellular responses induced by silver nanoparticles: in vitro studies. Toxicology Letters, 179, 93–100.

    Article  Google Scholar 

  11. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, K. L., Hess, K. L., Jones, R. L., Schlager, J. J. (2008). Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. Journal of Physical Chemistry, 112, 13608–13619.

    Google Scholar 

  12. Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S., Chueh, P. J. (2008). The apoptotic affect of nanosilver is mediated by ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, 179, 130–139.

    Article  Google Scholar 

  13. Rahman, M. F., Wang, J., Patterson, T. A., Saini, U. T., Robinson, B. L., Newport, G. D., Murdock, R. C., Schlager, J. J., Hussain, S. M., Ali, S. F. (2009). Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicology Letters, 187, 15–21.

    Article  Google Scholar 

  14. Tang, J., & Xi, T. (2008). Status of biological evaluation on silver nanoparticles. Journal of Biomedical Engineering, 25, 958–961.

    Google Scholar 

  15. Nishiyama, N., & Kataoka, K. (2006). Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology and Therapeutics, 112, 630–648.

    Article  Google Scholar 

  16. Aluri, S., Janib, S. M., Mackay, J. A. (2009). Environmentally responsive peptides as anticancer drug carriers. Advanced Drug Delivery Reviews, 61, 940–952.

    Article  Google Scholar 

  17. Wang, L., & Chen, D. (2004). “One-pot” fabrication of Ag/PMMA “shell/core” nanocomposites by chemical reduction method. Chemistry Letters, 33, 1010.

    Article  Google Scholar 

  18. Sun, H., Gao, Z., Yang, L., Gao, L., Lv, X. (2010). Synthesis and characterization of novel four-arm star PDMAEMA-stabilized colloidal silver nanoparticles. Colloid & Polymer Science, 288, 1713–1722.

    Article  Google Scholar 

  19. Pallavicini, P., Taglietti, A., Dacarro, G., Diaz-Fernandez, Y. A., Galli, M., Grisoli, P., Patrini, M., De Magistris, G. S., Zanoni, R. (2010). Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity. Journal of Colloid and Interface Science, 350, 110–116.

    Article  Google Scholar 

  20. Kang, S. W., & Kang, Y. S. (2011). Silver nanoparticles stabilized by crosslinked poly(vinyl pyrrolidone) and its application for facilitated olefin transport. Journal of Colloid and Interface Science, 353, 83–86.

    Article  Google Scholar 

  21. Kamrupi, I. R., Phukon, P., Konwer, B. K., Dolui, S. K. (2011). Synthesis of silver–polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity. Journal of Supercritical Fluids, 55, 1089–1094.

    Article  Google Scholar 

  22. Aguilar-Méndez, M., San Martín-Martínez, E., Ortega-Arroyo, L., Cobián-Portillo, G., Sánchez-Espíndola, E. (2011). Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. Journal of Nanoparticle Research, 13, 2525–2532.

    Article  Google Scholar 

  23. Montgomery, D. C. (2004). Design and analysis of experiments (p. 686). New York: Wiley.

    Google Scholar 

  24. Wieder, R. (2005). In R. Blumenthal (Ed.), Methods in molecular medicine. Chemosensitivity (1st ed., pp. 43–54). Totowa: Humana.

    Chapter  Google Scholar 

  25. Hermanson, G. T. (2008). Modification with synthetic polymers. Bioconjugate techniques (2nd ed., pp. 945–951). San Diego: Academic.

    Google Scholar 

  26. Zou, W., Cao, G., Xi, Y., Zhang, N. (2009). New approach for local delivery of rapamycin by bioadhesive PLGA–carbopol nanoparticles. Drug Delivery, 16, 15–23.

    Article  Google Scholar 

  27. Ledward, D. A. (2000). Gelatin. In G. O. Phillips P. A. Williams (Eds.), Handbook of hydrocolloids (1st ed., p. 67). Boca Raton: CRC.

    Google Scholar 

  28. Allen, P., & Davies, D. (2007). In M. G. Macey (Ed.), Flow cytometry: principles and applications (1st ed.). Totowa: Humana. pp 1.

    Google Scholar 

Download references

Acknowledgments

Studies were developed with the economic support of the Secretaría de Investigación y Posgrado–IPN Mexico and the scholarships for Ms. Casañas from COFAA–IPN and the Fund Project of Basic Science No. 154942 of Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo San Martín Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casañas Pimentel, R., San Martín Martínez, E., Monroy García, A. et al. Silver Nanoparticles Nanocarriers, Synthesis and Toxic Effect on Cervical Cancer Cell Lines. BioNanoSci. 3, 198–207 (2013). https://doi.org/10.1007/s12668-013-0085-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0085-6

Keywords

Navigation