Skip to main content
Log in

Surface Modification Using Prussian Blue–Gold (I)–Palladium Nanocomposite: Towards Bioelectrocatalytic Probing of Hydrogen Peroxide

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The synthesis of functional Prussian blue–gold(I) suspension is reported which allow the formation of Prussian blue–gold(I)/gold–palladium nanocomposite on the addition of gold nanoparticles (AuNPs) and nanostructured palladium under ambient conditions. The first step involves the synthesis of PB–Au(I) suspension following facile chemical method by the addition of an aqueous solution of tetrachloroauric acid (HAuCl4) to an aqueous solution of potassium ferricyanide followed by ultrasonication. The suspension of PB–Au(I) after drying is converted into a blue-colored nanocomposite powder showing efficient bioelectrocatalysis. The presence of Au(I) is proved from X-ray photon spectroscopy. The PB–Au(I) suspension undergo nanocomposite formation with gold and palladium nanoparticles. Such nanocomposites are formed by allowing ultrasonication of gold nanoparticles (AuNPs) or palladium that ultimately lead to the formation of three different electrocatalytic material designated as: (1) PB–Au(I), (2) PB–Au(I).AuNPs, and (3) PB–Au(I)/AuNPs–Pd and used for the development of efficient hydrogen peroxide sensors based on graphite paste-modified electrodes. Three different systems of modified electrodes namely PB–Au(I), PB–Au(I)/AuNPs, and PB–Au(I)/AuNPs–Pd are made by mixing the composite materials, graphite powder, binder in absence and the presence of horseradish peroxidise. The performance of these modified electrodes based on electrochemical measurement suggests gradual improvement in electrocatalysis in order of PB–Au(I)/AuNPs–Pd > PB–Au(I)/AuNPs > PB–Au(I) > PB. The results of cyclic voltammery and amperometric measurements are reported in this communication. The sensitivity for H2O2 determination is found to be order of 617.3 μAmM−1 cm−2 with a detection limit of 0.1 μM for PB–Au(I)/AuNPs–Pd-modified electrode. The stability of the modified electrodes is found to be more than 3 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Lu, X., Zhou, J., Lu, W., Liu, Q., Li, J. (2008). Carbon nanofiber-based composites for the construction of mediator-free biosensors. Biosensors & Bioelectronics, 23, 1236–1243.

    Article  Google Scholar 

  2. Shu, X., Chen, Y., Yuan, H., Gao, S., Xiao, D. (2007). H2O2 sensor based on the room-temperature phosphorescence of Nano TiO2/SiO2 composite. Analytical Chemistry, 79, 3695–3702.

    Article  Google Scholar 

  3. Wang, X. L., Yang, T., Feng, Y. Y., Jiao, K., Li, G. C. (2009). A novel hydrogen peroxide bisensor based on the synergistic effect of gold-platinum alloy nanoparticles/polyaniline nanotube/chitosan nanocomposite membrane. Electroanalysis, 21, 819–825.

    Google Scholar 

  4. Ricci, F., & Palleschi, G. (2005). Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosensors & Bioelectronics, 21, 389–407.

    Article  Google Scholar 

  5. Karyakin, A. A., Gitelmacher, O. V., Karyakina, E. E. (1995). Prussian blue-based first generation biosensor. A sensitive amperometric electrode for glucose. Analytical Chemistry, 67, 2419–2423.

    Article  Google Scholar 

  6. DeLongchamp, D. M., & Hammond, P. T. (2004). High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advance Functional Material, 14, 224–232.

    Article  Google Scholar 

  7. Itaya, K., Uchida, I., Neff, V. D. (1986). Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Accounts of Chemical Research, 19, 162–168.

    Article  Google Scholar 

  8. Kaneko, M., Hara, S., Yamada, A. (1985). A photoresponsive graphite electrode coated with Prussian blue. Journal of Electroanalytical Chemistry, 194, 165–168.

    Article  Google Scholar 

  9. Karyakin, A. A., Karyakina, E. E., Gorton, L. (1999). On the mechanism of H2O2 at Prussian blue modified electrodes. Electrochemistry Communications, 1, 78–82.

    Article  Google Scholar 

  10. Karyakin, A. A., & Karyakina, E. E. (1999). Prussian blue-based ‘artificial peroxidase’ as a transducer for hydrogen peroxide detection. Application to biosensors. Sensors and Actuators B, 57, 268–273.

    Article  Google Scholar 

  11. Harish, S., Joseph, J., Phani, K. L. N. (2011). Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)—does it lead to gold analogue of Prussian blue? Electrochimica Acta, 56, 5717–5721.

    Article  Google Scholar 

  12. Pandey, P. C., & Singh, B. (2008). Library of electrocatalytic sites in nano-structured domains: electrocatalysis of hydrogen peroxide. Biosensors & Bioelectronics, 24, 842–848.

    Article  Google Scholar 

  13. Pandey, P. C., Upadhyay, S., Sharma, S. (2003). Functionalized ormosils-based biosensor probing a horseradish peroxidase-catalyzed reaction. Journal of the Electrochemical Society, 150(4), H85–H92.

    Article  Google Scholar 

  14. Pandey, P. C., Upadhyay, S., Tiwari, I., Tripathi, V. S. (2001). An ormosil-based peroxide biosensor—a comparative study on direct electron transport from horseradish peroxidase. Sensors and Actuators B, 72, 224–232.

    Article  Google Scholar 

  15. Ellis, D., Eckhoff, M., Neff, V. D. (1981). Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. Journal of Physical Chemistry, 85, 1225–1231.

    Article  Google Scholar 

  16. Grabar, K. C., Freeman, R. G., Hommer, M. B., Natan, M. J. (1995). Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 67, 735–743.

    Article  Google Scholar 

  17. Pandey, P. C., & Upadhyay, B. C. (2005). Role of palladium in the redox electrochemistry of ferrocene monocarboxylic acid encapsulated within ORMOSIL networks. Molecules, 10, 728–739.

    Article  Google Scholar 

  18. Pandey, P. C., Pandey, A. K., Chauhan, D. S. (2012). Nanocomposite of Prussian blue based sensor for l-cysteine: Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochimica Acta, 74, 23–31.

    Article  Google Scholar 

  19. Ayers, J. B., & Piggs, W. H. (1971). Synthesis and properties of two series of heavy metal hexacyanoferrates. Journal of Inorganic and Nuclear Chemistry, 33, 721–733.

    Article  Google Scholar 

  20. Wilde, R. E., Ghosh, S. N., Marshall, B. J. (1970). The Prussian blues. Inorganic Chemistry, 9, 2512–2516.

    Article  Google Scholar 

  21. Cook, R., Crathorne, E. A., Monhemius, A. J., Perry, D. L. (1989). An XPS study of the adsorption of gold (I) cyanide by carbons. Hydrometallurgy, 22, 171–182.

    Article  Google Scholar 

  22. Warshawsky, A., Kahana, N., Kampel, V., Rogachev, I., Kautzmann, R. M., Cortina, J. L., et al. (2001). Ion exchange resins for gold cyanide extraction containing a piperazine functionality, 2. Study of the gold extraction reaction. Macromolecular Materials and Engineering, 286, 285–295.

    Article  Google Scholar 

  23. Klauber, C. (1991). X-ray photoelectron spectroscopic study of the adsorption mechanism of aurocyanide onto activated carbon. Langmuir, 7, 2153–2159.

    Article  Google Scholar 

  24. Cervini, R., Fleming, R. J., Kennedy, B. J., Murray, K. S. (1994). Physical properties of polypyrrole films containing dicyanoaurate(I) anions, PPy-Au(CN)2. Journal of Materials Chemistry, 4, 87–97.

    Article  Google Scholar 

  25. Dou, Y., Haswell, S., Greenman, J., Wadhawan, J. (2009). Immobilized anthraquinone for redox mediation of horseradish peroxidase for hydrogen peroxide sensing. Electrochemistry Communications, 11, 1976–1981.

    Article  Google Scholar 

  26. Chut, S. L., Li, J., Tan, S. N. (1997). Reagentless amperometric determination of hydrogen peroxide by silica sol-gel modified biosensor. Analyst, 122, 1431–1435.

    Article  Google Scholar 

  27. Haghighi, B., Hamidi, H., Gorton, L. (2010). Electrochemical behavior and application of Prussian blue nanoparticles modified graphite electrode. Sensors and Actuators B, 147, 270–276.

    Article  Google Scholar 

  28. Zhou, M., Zhai, Y. M., Dong, S. J. (2009). Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 81, 5603–5613.

    Article  Google Scholar 

  29. Fiorito, P. A., Brett, C. M. A., de Torresi, S. I. C. (2006). Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors. Talanta, 69, 403–408.

    Article  Google Scholar 

  30. Liu, Y., Chu, Z., Jin, W. (2009). A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian blue modified electrode. Electrochemistry Communications, 11, 484–487.

    Article  Google Scholar 

  31. Wang, G., Zhou, J., Jinghong, L. (2007). Layer-by-layer self-assembly aluminum Keggin ions/Prussian blue nanoparticles ultrathin films towards multifunctional sensing applications. Biosensors & Bioelectronics, 22, 2921–2925.

    Article  Google Scholar 

Download references

Acknowledgment

We are thankful to University Grants Commission (UGC) for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Chandra Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, P.C., Pandey, A.K. Surface Modification Using Prussian Blue–Gold (I)–Palladium Nanocomposite: Towards Bioelectrocatalytic Probing of Hydrogen Peroxide. BioNanoSci. 2, 127–134 (2012). https://doi.org/10.1007/s12668-012-0048-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0048-3

Keywords

Navigation