Skip to main content

Advertisement

Log in

Microstructure and Properties of ZM5 Alloy Repaired by Cold Welding

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The repair of magnesium alloy castings is of great importance in terms of engineering and economic benefits. This study employs the cold welding technique to repair the ZM5 alloy, and the effects of current and preheating treatment on the microstructure and mechanical properties were investigated. The increase in current exacerbates the cracks, while the preheating treatment can effectively control them. However, the liquefaction cracks occur near the heat-affected zone after preheating at 300 °C. The microstructure of the repaired zone shows finer dendritic structure consisting of α-Mg and β-Mg17Al12 phases. After preheating treatment, the repaired zone shows the microhardness of 72 HV0.1, higher than the non-preheating samples (65 HV0.1), and the substrate (63 HV0.1). The average tensile strength of the preheated samples is 110 MPa higher than the non-preheating samples, and reaching 88.7% of the substrate. The fracture mechanism for both the substrate and repaired samples was brittle failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tan C, Weng F, Sui S, Chew Y, and Bi G, Int J Mach Tool Manuf 170 (2021) 103804.

    Article  Google Scholar 

  2. Pan F, Yang M, and Chen X, J Mater Sci Technol 32 (2016) 1211.

    Article  CAS  Google Scholar 

  3. Luo A A, J Magnes Alloys 1 (2013) 2.

    Article  CAS  Google Scholar 

  4. Yuan T, Luo Z, and Kou S, Acta Mater 116 (2016) 166.

    Article  ADS  CAS  Google Scholar 

  5. Zhang Y B, and Ren D Y, J Mater Sci Technol 20 (2004) 766.

    CAS  Google Scholar 

  6. Xu Q Z, Li F Y, and Ding T, Adv Mater Res 482–484 (2012) 2051.

    Google Scholar 

  7. Wang W, Zhang Y, Yang G, Li Y, Qin L, and Ren Y, Rare Met 44 (2020) 18. (in Chinese).

    CAS  Google Scholar 

  8. Cao X, Jahazi M, Immarigeon J P, and Wallace W, J Mater Process Technol 171 (2006) 188.

    Article  CAS  Google Scholar 

  9. Zhou W, Long T Z, and Mark C K, Mater Sci Technol 23 (2007) 1294.

    Article  ADS  CAS  Google Scholar 

  10. Huang C J, Cheng C M, Chou C P, and Chen F H, J Mater Sci Technol 27 (2011) 633.

    Article  CAS  Google Scholar 

  11. ASM handbook: alloy phase diagrams. The Materials Information Company (1992).

  12. Huang C J, Cheng C M, and Chou C P, Mater Manuf Process 26 (9), (2011) 1179.

    Article  CAS  Google Scholar 

  13. Xiong F, Metal X-rays, Mechanical Industry Press, Beijing (1988).

    Google Scholar 

  14. Zhang S, Wu C L, and Zhang C H, Mater Lett 141 (2015) 7.

    Article  CAS  Google Scholar 

  15. Zhu T, Chen Z, and Wei G, Mater Charact 59 (2008) 1550.

    Article  CAS  Google Scholar 

  16. Braszczyńska-Malik K N, and Mróz M, J Alloys Compd 509 (2011) 9951.

    Article  Google Scholar 

  17. Cáceres C H, and Rovera D M, J Light Metals 1 (2001) 151.

    Article  Google Scholar 

  18. Yu L, Yan H, Chen J, Xia W, Su B, and Song M, Mater Sci Eng A 772 (2019) 138707.

    Article  Google Scholar 

  19. Liu T, and Pan F, Chin J Nonferrous Met 29 (2019) 2050. (in Chinese).

    Google Scholar 

  20. Hall E O, Proc Phys Soc Sect B 64 (1951) 747.

    Article  ADS  Google Scholar 

  21. Petch N J, J Iron Steel Inst 174 (1953) 25.

    CAS  Google Scholar 

  22. Shen J, Wen L, Li Y, and Ming D, Mater Sci Eng A 578 (2013) 303.

    Article  CAS  Google Scholar 

  23. Wang F, Bhattacharyya J, and Agnew S, Mater Sci Eng A 666 (2016) 114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFE0122600), and the China Aero Engine Group industry-university-research cooperation project (No. HFZL2021CXY025-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Chao or Yang Guang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junzhen, Y., Wenqi, Z., Chao, W. et al. Microstructure and Properties of ZM5 Alloy Repaired by Cold Welding. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-023-03250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03250-3

Keywords

Navigation