Skip to main content
Log in

Characterizing Structural Heterogeneity in Metallic Glasses: A Molecular Dynamics-Guided Machine Learning Approach

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The main objective of this research is to develop a robust Bayesian machine learning (ML) model capable of predicting and characterizing the structural heterogeneity in metallic glasses (MGs). The model is constructed using input data obtained from molecular dynamics simulations of CuZr MGs, encompassing a wide range of alloying compositions and simulation parameters. The ML model utilized crucial output variables: the 2D fractal dimension (with a fractal exponent ranging from 1.55 to 1.81) and correlation function (correlation length spanning from 1.1 to 4.05 nm), demonstrating inverse and direct relationships with the degree of heterogeneity, respectively. The results demonstrate the model's high predictive performance, with accuracy values of 0.9398 for the fractal dimension and 0.9639 for the correlation length. It is noteworthy that the correlation length proves to be a reliable indicator for low to intermediate levels of structural heterogeneity, while the fractal dimension effectively characterizes high-level heterogeneity in MGs. Moreover, the integration of both indicators complements each other in accurately predicting structural heterogeneity. Additionally, the developed ML model showcases its versatility in effectively characterizing MG samples exposed to diverse treatments, such as annealing and rejuvenation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Samavatian M, Gholamipour R, Amadeh A A, and Mirdamadi S, Mater. Sci. Eng. A 753 (2019) 218.

    Article  CAS  Google Scholar 

  2. Lin Y, Dai J, Yang Z Z, Jiang S S, Xu Q H, Wang Y G, Chen F G, and Jain A, J. Alloys Compd. 936 (2023) 168268.

    Article  CAS  Google Scholar 

  3. Supriyono, Surendar A, Thangavelu L, Arzehgar Z, Pokrovskii M V, Neganov D A, Goncharov D K, and Mohanty H, Trans. Indian Inst. Met. 74 (2021) 1721.

    Article  CAS  Google Scholar 

  4. Wang T, Zhou Y, and Zhang L, J. Non. Cryst. Solids 603 (2023) 122115.

    Article  CAS  Google Scholar 

  5. Di S, Ke H, Wang Q, Zhou J, Zhao Y, and Shen B, Mater. Des. 222 (2022) 111074.

    Article  CAS  Google Scholar 

  6. Vishwanadh B, and Tewari R, Trans. Indian Inst. Met. 75 (2022) 997.

    Article  CAS  Google Scholar 

  7. Han X, Gu Y, Yao Y, Kong L, Li L, and Yan F, Res. Surf. Interfaces 10 (2023) 100094.

    Article  Google Scholar 

  8. Liang T, Yu Q, Yin Z, Chen S, Liu Y, Yang Y, Lou H, Shen B, Zeng Z, and Zeng Q, Materials (Basel) 15 (2022) 6319.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Xu F, Liu Y Z, Sun X, Peng J F, Ding Y H, Huo J T, Wang J Q, and Gao M, Appl. Surf. Sci. 611 (2023) 155730.

    Article  CAS  Google Scholar 

  10. Sun Q, Miskovic D M, and Ferry M, J. Mater. Sci. Technol. 104 (2022) 214.

    Article  CAS  Google Scholar 

  11. Samavatian M, Gholamipour R, Amadeh A A, and Samavatian V, Phys. B Condens. Matter 595 (2020) 412390.

    Article  CAS  Google Scholar 

  12. Wang D P, Qiao J C, and Liu C T, Mater. Res. Lett. 7 (2019) 305–311.

    Article  CAS  Google Scholar 

  13. Mahmoud Z H, Barazandeh H, Mostafavi S M, Ershov K, Goncharov A, Kuznetsov A S, Kravchenko O D, and Zhu Y, J. Mater. Res. Technol. 11 (2021) 2015.

    Article  CAS  Google Scholar 

  14. Kosiba K, Şopu D, Scudino S, Zhang L, Bednarcik J, and Pauly S, Int. J. Plast. 119 (2019) 156.

    Article  CAS  Google Scholar 

  15. Brink T, and Albe K, Acta Mater. 156 (2018) 205.

    Article  ADS  CAS  Google Scholar 

  16. Şopu D, Scudino S, Bian X L, Gammer C, and Eckert J, Scr. Mater. 178 (2020) 57.

    Article  Google Scholar 

  17. Scudino S, Bian J J, Shakur Shahabi H, Şopu D, Sort J, Eckert J, and Liu G, Sci. Rep. 8 (2018) 9174.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu F, Song S, Reddy K M, Hirata A, and Chen M, Nat. Commun. 9 (2018) 1.

    Article  Google Scholar 

  19. Wang N, Ding J, Yan F, Asta M, Ritchie R O, and Li L, NPJ Comput. Mater. 4 (2018) 19.

    Article  ADS  Google Scholar 

  20. Samavatian M, Gholamipour R, Bokov D O, Suksatan W, Samavatian V, and Mahmoodan M, J. Non. Cryst. Solids 578 (2022) 121344.

    Article  CAS  Google Scholar 

  21. Wu Y, Xu B, Zhang X, and Guan P, Acta Mater. 247 (2023) 118741.

    Article  CAS  Google Scholar 

  22. Wang Q, and Jain A, Nat. Commun. 10 (2019) 5537.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C, Wang Y, Wang Y, Islam M, Hwang J, Wang Y, and Fan Y, Acta Mater. 259 (2023) 119281.

    Article  CAS  Google Scholar 

  24. Wang Q, Ding J, Zhang L, Podryabinkin E, Shapeev A, and Ma E, NPJ Comput. Mater. 6 (2020) 194.

    Article  ADS  Google Scholar 

  25. Şopu D, Yuan X, Moitzi F, Spieckermann F, Bian X, and Eckert J, Appl. Mater. Today 22 (2021) 100958.

    Article  Google Scholar 

  26. Gao R, Hui X, Fang H Z, Liu X J, Chen G L, and Liu Z K, Comput. Mater. Sci. 44 (2008) 802.

    Article  CAS  Google Scholar 

  27. Fan Z, Ding J, and Ma E, Mater. Today 40 (2020) 48.

    Article  CAS  Google Scholar 

  28. Li F, Liu X J, Hou H Y, Chen G, Chen G L, and Li M, Intermetallics 17 (2009) 98.

    Article  CAS  Google Scholar 

  29. Çağin T, Kimura Y, Qi Y, Li H, Ikeda H, Johnsonb W L, and Goddard W A, MRS Online Proc. Libr. 554 (1998) 43.

    Article  Google Scholar 

  30. Hu Y C, Li F X, Li M Z, Bai H Y, and Wang W H, Nat. Commun. 6 (2015) 8310.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, and Chen M W, Nat. Commun. 7 (2016) 11516.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun Q, Miskovic D M, Laws K, Kong H, Geng X, and Ferry M, Appl. Surf. Sci. 533 (2020) 147453.

    Article  CAS  Google Scholar 

  33. Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, and Liu C T, Acta Mater. 60 (2012) 5260.

    Article  ADS  CAS  Google Scholar 

  34. Sarkar N K, Vishwanadh B, Prajapat C L, Babu P D, Ravikumar G, Dey G K, Voyles P M, Tewari R, and Mishra P K, Mater. Today Commun. 25 (2020) 101427.

    Article  CAS  Google Scholar 

  35. Ma D, Stoica A D, and Wang X-L, Nat. Mater. 8 (2009) 30.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Samavatian V, Fotuhi-Firuzabad M, Samavatian M, Dehghanian P, and Blaabjerg F, Sci. Rep. 10 (2020) 14821.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asrav T, and Aydin E, Comput. Chem. Eng. 173 (2023) 108195.

    Article  CAS  Google Scholar 

  38. Ke X, and Duan Y, Constr. Build. Mater. 270 (2021) 121424.

    Article  CAS  Google Scholar 

  39. Chilenski M A, Greenwald M, Marzouk Y, Howard N T, White A E, Rice J E, and Walk J R, Nucl. Fusion 55 (2015) 23012.

    Article  CAS  Google Scholar 

  40. Duan Y, Cooling C, Ahn J S, Jackson C, Flint A, Eaton M D, and Bluck M J, Int. J. Heat Fluid Flow 80 (2019) 108497.

    Article  Google Scholar 

  41. Seeger M, Int. J. Neural Syst. 14 (2004) 69.

    Article  PubMed  Google Scholar 

  42. Rasmussen C E, Gaussian processes in machine learning, in: Adv. Lect. Mach. Learn. ML Summer Sch. 2003, Canberra, Aust. Febr. 2–14, 2003, Tübingen, Ger. August 4–16, 2003, Revis. Lect., Springer, (2004), p. 63.

  43. Roberts S, Osborne M, Ebden M, Reece S, Gibson N, and Aigrain S, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371 (2013) 20110550.

    Article  ADS  CAS  Google Scholar 

  44. Gao F, and Han L, Comput. Optim. Appl. 51 (2012) 259–277.

    Article  MathSciNet  Google Scholar 

  45. Yang Z Z, Zhu L, Ye L X, Gao X, Jiang S S, Yang H, and Wang Y G, J. Non. Cryst. Solids 571 (2021) 121078.

    Article  CAS  Google Scholar 

  46. Li S, Zhang H, Dai D, Ding G, Wei X, and Guo Y, J. Alloys Compd. 782 (2019) 110–118.

    Article  CAS  Google Scholar 

  47. Wang M, Lü S, Wu S, and Guo W, J. Alloys Compd. 945 (2023) 169294.

    Article  CAS  Google Scholar 

  48. Deshmukh A A, Bhatt J G, Gade P M, and Pal S, J. Mol. Model. 27 (2021) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsha Mohanty.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Mohanty, H. Characterizing Structural Heterogeneity in Metallic Glasses: A Molecular Dynamics-Guided Machine Learning Approach. Trans Indian Inst Met 77, 767–778 (2024). https://doi.org/10.1007/s12666-023-03170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03170-2

Keywords

Navigation