Skip to main content
Log in

Influence of α-Al2O3 Ceramic Nanoparticles on the Microstructure and Mechanical Properties of Pure Aluminium Based Nanocomposites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Sol–gel synthesized ceramic α-Al2O3 nanoparticles were mixed with commercially pure Al powder from 0 to 2.5 wt% in composition to prepare nanocomposites. Mixing of the powders was carried out by using two different techniques viz. normal wet-mixing and ultrasonication. Among these two techniques, ultrasonication was found to be more effective method to achieve uniform distribution of nanoparticles. After uniform mixing, the samples were prepared through powder metallurgy route. Hardness, compression and bending test were conducted to investigate the effect of α-Al2O3 nanoparticles on Al. The microstructure of the nanocomposites revealed that the nanoparticles impede the grain growth of Al particles during the time of sintering, which resulted in the grain refinement. Moreover, the strength of the nanocomposite was improved by the subsequent incorporation of nanoparticles. However, beyond 2wt% of nanoparticles content, the bending strength and hardness were reduced considerably. Maximum improvement in the values of compressive and bending strength was found as 64% and 50%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ravikumar M, Reddappa H N, Suresh R, Babu E R, and Nagaraja C R, Adv Mater Process Technol 8 (2022) 4018.

    Google Scholar 

  2. Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Sanayei M, and Szpunar J A, Powder Metall 61 (2017) 50.

    Article  Google Scholar 

  3. Ravikumar M, and Suresh R, Exp Des (2023). https://doi.org/10.1007/s41939-023-00179-4

    Article  Google Scholar 

  4. Shrivastava V, Singh P, Gupta G K, Srivastava S K, and Singh I B, J Alloys Compd 857 (2021) 157590

    Article  CAS  Google Scholar 

  5. David R, Shrivastava V, Dasgupta R, Prasad B K, and Singh I B, J Mater Eng Perform 28 (2019) 2356.

    Article  CAS  Google Scholar 

  6. Amigo V, Ortiz J L, and Salvador M D, Scripta Mater 42 (2000) 383.

    Article  CAS  Google Scholar 

  7. Ravikumar M, Reddappa H N, and Suresh R, Silicon 10 (2018) 2535.

    Article  CAS  Google Scholar 

  8. Shrivastava V, Singh A, and Singh I B, Mater Corros 68 (2017) 1099.

    Article  CAS  Google Scholar 

  9. Mazahery A, and Ostadshabani M, J Compos Mater 45 (2011) 2579.

    Article  CAS  Google Scholar 

  10. Shrivastava V, Gupta G K, and Singh I B, J Alloys Compd 775 (2019) 628.

    Article  CAS  Google Scholar 

  11. Ravikumar M, Reddappa H, Suresh R, Babu E, and Nagaraja C, Frattura ed Integrità Strutturale 15 (2021) 166.

    Article  Google Scholar 

  12. Malchere A, Grosbras M, Demenet J L, Bresson L, and Gaffet E, Mater Sci Forum 225–227 (1996) 763.

    Article  Google Scholar 

  13. Kok M, J Mater Process Technol 161 (2005) 381.

    Article  CAS  Google Scholar 

  14. Torralba J M, da Costa C E, and Velasco F, J Mater Process Technol 133 (2003) 203.

    Article  CAS  Google Scholar 

  15. Kang Y-C, and Chan SL-I, Mater Chem Phys 85 (2004) 438.

    Article  CAS  Google Scholar 

  16. Filho S L U, Rodriguez R, Earthman J C, and Lavernia E J, Forum 416–418 (2003) 213.

    Google Scholar 

  17. Asghar Z, Latif M A, Rafi ud D, Nazar Z, Ali F, Basit A, et al., Powder Metall 61 (2018) 293.

    Article  CAS  Google Scholar 

  18. Singh P, Abhash A, Yadav B N, Shafeeq M, Singh I B, and Mondal D P, Powder Technol 342 (2019) 275.

    Article  CAS  Google Scholar 

  19. Lü S, Xiao P, Yuan D, Hu K, and Wu S, J Mater Sci Technol 34 (2018) 1609.

    Article  Google Scholar 

  20. Wang K, Xu G P, Jiang H Y, Wang Q D, Ye B, and Ding W J, Ultrason Sonochem 58 (2019) 104626

    Article  CAS  Google Scholar 

  21. Madhukar P, Selvaraj N, Gujjala R, and Rao C S P, Ultrason Sonochem 58 (2019) 104665

    Article  CAS  Google Scholar 

  22. Chen R, Zheng D, Ma T, Ding H, Su Y, Guo J, et al., Ultrason Sonochem 38 (2017) 120.

    Article  Google Scholar 

  23. Li J, Lü S, Wu S, and Gao Q, Ultrason Sonochem 42 (2018) 814.

    Article  CAS  Google Scholar 

  24. Christy Roshini P, Nagasivamuni B, Raj B, and Ravi K R, J Mater Eng Perform 24 (2015) 2234.

    Article  CAS  Google Scholar 

  25. Singh L K, Bhadauria A, and Laha T, Powder Technol 356 (2019) 1059.

    Article  CAS  Google Scholar 

  26. Sivasankaran S, Sivaprasad K, Narayanasamy R, and Iyer V K, J Alloys Compd 507 (2010) 236.

    Article  CAS  Google Scholar 

  27. Nie K, Kang X, Deng K, Wang T, Guo Y, and Wang H, Nanomaterials (Basel) 8 (2018) 1.

    Article  Google Scholar 

  28. Shepelev D, Klempf J, Bamberger M, and Katsman A, J Mater Sci 46 (2011) 5798.

    Article  CAS  Google Scholar 

  29. Shrivastava V, Dubey S, Gupta GK, Singh IB, J Mater Eng Perform 26 (2017) 4424. https://doi.org/10.1007/s11665-017-2893-2

    Article  CAS  Google Scholar 

  30. Khorshid M T, Jahromi S A J, and Moshksar M M, Mater Des 31 (2010) 3880.

    Article  CAS  Google Scholar 

  31. Ezatpour H R, Parizi M T, Sajjadi S A, Ebrahimi G R, and Chaichi A, Mater Chem Phys 178 (2016) 119.

    Article  CAS  Google Scholar 

  32. Sangeetha S, and Kalaignan G P, Ceram Int 41 (2015) 10415.

    Article  CAS  Google Scholar 

  33. Mahmoud T S, El-Kady E Y, and Al-Shihri A, Corros Eng Sci Technol 47 (2013) 45.

    Article  Google Scholar 

  34. Han Q, Setchi R, and Evans S L, Powder Technol 297 (2016) 183.

    Article  CAS  Google Scholar 

  35. Mazen A A, and Ahmed A Y, J Mater Eng Perform 7 (1998) 393.

    Article  CAS  Google Scholar 

  36. Alexander R, Murthy T S R C, Ravikanth K V, Prakash J, Mahata T, Bakshi S R, et al., Ceram Int 44 (2018) 9830.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Council of Scientific and Industrial Research, New Delhi, India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikas Shrivastava or Gaurav Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, V., Gupta, G., Srivastava, R. et al. Influence of α-Al2O3 Ceramic Nanoparticles on the Microstructure and Mechanical Properties of Pure Aluminium Based Nanocomposites. Trans Indian Inst Met 77, 533–541 (2024). https://doi.org/10.1007/s12666-023-03138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03138-2

Keywords

Navigation