Skip to main content

Advertisement

Log in

Study of Microstructure and Mechanical Properties of Short Carbon Fibers Reinforced Mg Matrix Composites Fabricated by Hot Extrusion

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study investigated the effect of extrusion ratio on the microstructural evolution and mechanical properties of the as-extruded short carbon fibers (SCFs) reinforced AZ31 alloy composite, and the microstructural development of the composite during extrusion was thoroughly investigated. The dominant dynamic recrystallization (DRX) mechanisms are particle simulated nucleation, continuous DRX, and discontinuous DRX. The addition of SCFs promotes the dynamic recrystallization during hot extrusion. As extrusion ratio increases, the interfacial bonding degree of the composite increases gradually, and the composite with an extrusion ratio of 25:1 exhibits the finest DRXed grains and the best mechanical performance with a yield strength of 171 MPa, an ultimate tensile strength of 258 MPa and an elongation of 6.0%. The enhanced strength is mainly attributed to grain refinement strengthening and dislocation strengthening, which are induced by the DRXed grains and the added SCFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Z Y, Chen B, Zhao P Y, Yu L P, Pei Z R, Zhou B, and Zeng X, Vacuum 207 (2023) 111668. https://doi.org/10.1016/j.vacuum.2022.111668

    Article  CAS  Google Scholar 

  2. Yang Z, Wang G, Chao X, Wang M, Nakata T, Hongyu X, Geng L, and Kamado S, J Mater Res Technol 21 (2022) 3756. https://doi.org/10.1016/j.jmrt.2022.11.015

    Article  CAS  Google Scholar 

  3. Dai Y, Xiao M, Hu Y, Yang Y, Jiang B, Zheng T, Dong L, Yang B, and Zheng C, J Mater Res Technol 20 (2022) 1570. https://doi.org/10.1016/j.jmrt.2022.07.166

    Article  CAS  Google Scholar 

  4. Li W J, Deng K K, Zhang X, Wang C J, Kang J W, Nie K B, and Liang W, Microstructures, tensile properties and work hardening behavior of sicp/Mg-Zn-Ca composites. J Alloys Compd 695 (2017) 2215. https://doi.org/10.1016/j.jallcom.2016.11.070

    Article  CAS  Google Scholar 

  5. Zhang J H, Nie K B, Deng K K, Han J G, and Yi J Y, Compos Commun 27 (2021) 100. https://doi.org/10.1016/j.coco.2021.100847

    Article  Google Scholar 

  6. Shen M J, Wang X J, Zhang M F, Hu X S, Zheng M Y, and Wu K, Mater Sci Eng A 601 (2014) 58. https://doi.org/10.1016/j.msea.2014.02.035

    Article  CAS  Google Scholar 

  7. Xiong B W, Wang Z J, Wang C W, Xiong Y Z Y, and Cai C, Intermetallics 106 (2019) 59. https://doi.org/10.1016/j.intermet.2018.12.010

    Article  CAS  Google Scholar 

  8. Yang Z, Xu H Y, Wang Y, Hu M L, and Ji Z S, Mater Res Express 6 (2019) 106547. https://doi.org/10.1088/2053-1591/ab38d0

    Article  CAS  Google Scholar 

  9. Xu H Y, Zhao Y, Hu M L, and Ji Z S, Results Phys 17 (2020) 103074. https://doi.org/10.1016/j.rinp.2020.103074

    Article  Google Scholar 

  10. Ye J, Chen X, Luo H, Zhao J, Li J, Tan J, Yang H, Feng B, Zheng K, and Pan F, J Magn Alloys 10 (2022) 2266. https://doi.org/10.1016/j.jma.2022.06.012

    Article  CAS  Google Scholar 

  11. Sun S, Deng N, Zhang H, He L, Zhou H, Han B, Gao K, and Wang X, J Mater Res Technol 15 (2021) 1789. https://doi.org/10.1016/j.jmrt.2021.09.015

    Article  CAS  Google Scholar 

  12. Feng J, Song K X, Liang S H, Guo X H, and Li S L, J Mater Res Technol 20 (2022) 1470. https://doi.org/10.1016/j.jmrt.2022.07.131

    Article  CAS  Google Scholar 

  13. Yuan Q H, Zhou G H, Liao L, Liu Y, and Luo L, Carbon 127 (2018) 177. https://doi.org/10.1016/j.carbon.2017.10.090

    Article  CAS  Google Scholar 

  14. Nie K B, Guo Y C, Deng K K, and Kang X K, J Alloys Compd 792 (2019) 267. https://doi.org/10.1016/j.jallcom.2019.04.028

    Article  CAS  Google Scholar 

  15. Xiao L, Yang G Y, Chen J M, Luo S F, Li J H, and Jie W Q, Mater Sci Eng A 744 (2019) 277. https://doi.org/10.1016/j.msea.2018.11.142

    Article  CAS  Google Scholar 

  16. Nie K B, Zhu Z H, Deng K K, and Han J G, J Magn Alloy 8 (2020) 676. https://doi.org/10.1016/j.jma.2020.04.006

    Article  CAS  Google Scholar 

  17. Yan K, Sun J P, Liu H, Cheng H H, Bai J, and Huang X, Mater Lett 242 (2019) 87. https://doi.org/10.1016/j.matlet.2019.01.089

    Article  CAS  Google Scholar 

  18. Asgharzadeh H, Joo S H, and Kim H S, Metall Mater Trans A 45 (2014) 4129. https://doi.org/10.1007/s11661-014-2354-6

    Article  CAS  Google Scholar 

  19. Nakata T, Xu C, Ajima R, Matsumoto Y, Shimizu K, Sasaki T T, Hono K, and Kamado S, Mater Sci Eng A 712 (2018) 12. https://doi.org/10.1016/j.msea.2017.11.085

    Article  CAS  Google Scholar 

  20. Xu C, Nakata T, Qiao X G, Jiang H S, Sun W T, Chi Y C, Zheng M Y, and Kamado S, Mater Sci Eng: A 685 (2017) 159. https://doi.org/10.1016/j.msea.2016.12.121

    Article  CAS  Google Scholar 

  21. Yang Z, Xu C, Nakata T, and Kamado S, Mater Sci Eng A 800 (2021) 140330. https://doi.org/10.1016/j.msea.2020.140330

    Article  CAS  Google Scholar 

  22. Park S H, You B S, Mishra R K, and Sachdev A K, Mater Sci Eng A 598 (2014) 396. https://doi.org/10.1016/j.msea.2014.01.051

    Article  CAS  Google Scholar 

  23. Liu H, Ju J, Yang X, Yan J, Song D, Jiang J, and Ma A, J Alloys Compd 704 (2017) 509. https://doi.org/10.1016/j.jallcom.2017.02.107

    Article  CAS  Google Scholar 

  24. Jiang M G, Xu C, Yan H, Fan G H, Nakata T, Lao C S, Chen R S, Kamado S, Han E H, and Lu B H, Acta Materialia 157 (2018) 53. https://doi.org/10.1016/j.actamat.2018.07.014

    Article  CAS  Google Scholar 

  25. Yu Z J, Xu C, Meng J, Liu K, and Fu J L, Mater Sci Eng A 762 (2019) 138080. https://doi.org/10.1016/j.msea.2021.142521

    Article  CAS  Google Scholar 

  26. Chi Y Q, Xu C, Qiao X G, and Zheng M Y, J Alloys Compd 789 (2019) 416. https://doi.org/10.1016/j.jallcom.2019.03.066

    Article  CAS  Google Scholar 

  27. Liu W, Su Y, Zhang Y, Chen L, Hou H, and Zhao Y, J Magn Alloys 11 (4), (2023) 1408. https://doi.org/10.1016/j.jma.2022.03.018

    Article  CAS  Google Scholar 

  28. Jiang M G, Xu C, Yan H, Lu S H, Nakata T, Lao C S, Chen R S, Kamado S, and Han E H, Sci Rep 8 (1), (2018) 16800. https://doi.org/10.1038/s41598-018-35170-4

    Article  CAS  Google Scholar 

  29. Zhang L, Wang Q, Liao W, Guo W, Li W, Jiang H, and Ding W, Mater Sci Eng A 689 (2017) 427. https://doi.org/10.1016/j.msea.2017.02.076

    Article  CAS  Google Scholar 

  30. Pan H, Qin G, Huang Y, Ren Y, Sha X, Han X, Liu Z Q, Li C, Wu X, Chen H, and He C, Acta Materialia 149 (2018) 350. https://doi.org/10.1016/j.actamat.2018.03.002

    Article  CAS  Google Scholar 

  31. Yang Z, Xu H Y, Wang Y, Hu M L, and Ji Z S, Results Phys 12 (2019) 888. https://doi.org/10.1016/j.rinp.2018.12.039

    Article  Google Scholar 

  32. Chen F Y, Ying J M, Wang Y F, Du S Y, Liu Z, and Huang Q, Carbon 96 (2016) 836. https://doi.org/10.1016/j.carbon.2015.10.023

    Article  CAS  Google Scholar 

  33. Rashad M, Pan F S, Hu H H, Asif M, Hussain S, and She J, Mater Sci Eng A 630 (2015) 36–44. https://doi.org/10.1016/j.msea.2015.02.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Heilongjiang Province (LH2020E083), Scientific Research Starting Foundation of Anhui Polytechnic University of China (2020YQQ036), Research Project of Anhui Polytechnic University of China (Xjky2022025), and the Open Research Fund of Anhui Key Laboratory of High-Performance Non-Ferrous Metal Materials (YSJS-2023-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Yang or Hong-yu Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xu, Hy., Jiang, B. et al. Study of Microstructure and Mechanical Properties of Short Carbon Fibers Reinforced Mg Matrix Composites Fabricated by Hot Extrusion. Trans Indian Inst Met 77, 583–591 (2024). https://doi.org/10.1007/s12666-023-03130-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03130-w

Keywords

Navigation