Skip to main content
Log in

An Overview of Thermodynamics and Growth Kinetics of Gas Hydrate Systems

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Clathrate hydrates (or gas hydrates) belong to the class of crystalline guest–host compounds where water molecules act as hosts forming cage-like structures to entrap small guest molecules with suitable size, such as methane, ethane, CO2, and N2. The design of oil and gas production facilities and hydrate-based applications (desalination, energy storage/transportation, etc.) require a clear understanding of the thermodynamics and kinetics of gas hydrate formation. The current work encapsulates the fundamentals of thermodynamics, nucleation, and growth kinetics of gas hydrates critical in developing processes for gas hydrate-based applications. In the thermodynamics part, the original van der Waals and Platteeuw model and its modifications are discussed, and the challenges with inhibited hydrate phase equilibria measurements and predictions are highlighted. Nucleation and growth kinetics of gas hydrates are also briefly reviewed to present the current state of understanding in this field. While gas hydrate thermodynamics is reasonably well understood, the understanding of nucleation and growth kinetics of gas hydrates is relatively poor. However, molecular simulations have advanced our understanding considerably in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Warrier et al. [3]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified from Ward [37]

Fig. 7

Reproduced with permission from Ward [37]

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Adapted from Khan et al. [10] (color Figure Online)

Similar content being viewed by others

References

  1. Sloan E D, and Koh C A, Clathrate Hydrates of Natural Gases, 3rd edn, CRC Press Boca Raton FL (2007), Hardcover ISBN: 9780849390784. https://doi.org/10.1201/9781420008494

  2. Koh C A, Sloan E D, Sum A K, and Wu D T, Annu Rev Chem Biomol Eng 2 (2011) 237. https://doi.org/10.1146/annurev-chembioeng-061010-114152

    Article  CAS  Google Scholar 

  3. Warrier P, Khan M N, Srivastava V, Maupin C M, and Koh C A, J Chem Phys 145 (2016) 211705. https://doi.org/10.1063/1.4968590

    Article  CAS  Google Scholar 

  4. Davy VIII H, Philos Trans R Soc Lond 101 (1811) 155. https://doi.org/10.1098/rstl.1811.0008

    Article  Google Scholar 

  5. Hammerschmidt E, Ind Eng Chem 26 (1934) 851. https://doi.org/10.1021/ie50296a010

    Article  CAS  Google Scholar 

  6. Sloan E D, Molecules 26 (2021) 4476. https://doi.org/10.3390/molecules26154476

    Article  CAS  Google Scholar 

  7. Chatti I, Delahaye A, Fournaison L, and Petitet J P, Energy Convers Manag 46 (2005) 1333. https://doi.org/10.1016/j.enconman.2004.06.032

    Article  CAS  Google Scholar 

  8. Ripmeester J A, and Alavi S, Clathrate Hydrates: Molecular Science and Characterization, Volume 1, Wiley-VCH GmbH (2022), E-Book ISBN: 9783527695058. https://doi.org/10.1002/9783527695058

  9. Max M D, and Pellenbarg R E, Desalination through gas hydrate, U.S. Patent US6158239A (2000). https://patents.google.com/patent/US6158239A/en. Accessed 4 Nov 2022

  10. Khan M N, Peters C J, and Koh C A, Desalination 468 (2019) 114049. https://doi.org/10.1016/j.desal.2019.06.015

    Article  CAS  Google Scholar 

  11. Linga P, Kumar R, Lee J D, Ripmeester J, and Englezos P, Int J Greenh Gas Control 4 (2010) 630. https://doi.org/10.1016/j.ijggc.2009.12.014

    Article  CAS  Google Scholar 

  12. Gudmundsson J, Andersson V, Levik O, and Mork M, Ann NY Acad Sci 912 (2000) 403. https://doi.org/10.1111/j.1749-6632.2000.tb06794.x

    Article  CAS  Google Scholar 

  13. Babu P, Linga P, Kumar R, and Englezos P, Energy 85 (2015) 261. https://doi.org/10.1016/j.energy.2015.03.103

    Article  CAS  Google Scholar 

  14. Thomas S, and Dawe R A, Energy 28 (2003) 1461. https://doi.org/10.1016/S0360-5442(03)00124-5

    Article  CAS  Google Scholar 

  15. Takaoki T, Iwasaki T, Katoh Y, Arai T, and Horiguchi K, Use of hydrate pellets for transportation of natural gas I - Advantage of pellet form of natural gas hydrate in sea transportation, Proc. 4th Int. Conf. Gas Hydrates, Yokohama (2002) 5. https://cir.nii.ac.jp/crid/1571417125434354944. Accessed 4 Nov 2022

  16. Linga P, Kumar R, and Englezos P, J Hazard Mater 149 (2007) 625. https://doi.org/10.1016/j.jhazmat.2007.06.086

    Article  CAS  Google Scholar 

  17. Warrier P, Khan M N, Carreon M A, Peters C J, and Koh C A, J Renew Sustain Energy 10 (2018) 034701. https://doi.org/10.1063/1.5019967

    Article  CAS  Google Scholar 

  18. Khan M N, Warrier P, Peters C J, and Koh C A, Energies 15 (2022) 966. https://doi.org/10.3390/en15030966

    Article  CAS  Google Scholar 

  19. Strobel T A, Taylor C J, Hester K C, Dec S F, Koh C A, Miller K T, and Sloan E D, J Phys Chem B 110 (2006) 17121. https://doi.org/10.1021/jp062139n

    Article  CAS  Google Scholar 

  20. Zhang Y, Bhattacharjee G, Zheng J, and Linga P, Chem Eng J 427 (2022) 131771. https://doi.org/10.1016/j.cej.2021.131771

    Article  CAS  Google Scholar 

  21. Boswell R, and Collett T S, Energy Environ Sci 4 (2011) 1206. https://doi.org/10.1039/C0EE00203H

    Article  CAS  Google Scholar 

  22. Waite W F, Ruppel C D, Boze L-G, Lorenson T D, Buczkowski B J, McMullen KY, and Kvenvolden K A, Preliminary global database of known and inferred gas hydrate locations: U.S. Geological Survey data release, (2020). https://doi.org/10.5066/P9llFVJM

  23. Collett T S, Boswell R, Waite W F, Kumar P, Roy S K, Chopra K, Singh S K, Yamada Y, Tenma N, Pohlman J, Zyrianova M, NGHP Expedition 02 Scientific Party, Mar Pet Geol 108 (2019) 39. https://doi.org/10.1016/j.marpetgeo.2019.05.023

    Article  Google Scholar 

  24. Khan M N, Warrier P, Peters C J, and Koh C A, Fluid Phase Equilib 463 (2018) 48. https://doi.org/10.1016/j.fluid.2018.01.014

    Article  CAS  Google Scholar 

  25. Ke W, and Kelland M A, Energy Fuels 30 (2016) 10015. https://doi.org/10.1021/acs.energyfuels.6b02739

    Article  CAS  Google Scholar 

  26. Yu C, Yue C, Sun B, Yang X, Ji J, Meng Z, and Chen L, Energy Fuels 36 (2022) 10685. https://doi.org/10.1021/acs.energyfuels.2c01285

    Article  CAS  Google Scholar 

  27. Ripmeester J A, and Alavi A, Curr Opin Solid State Mat Sci 20 (2016) 344. https://doi.org/10.1016/j.cossms.2016.03.005

    Article  CAS  Google Scholar 

  28. Yin Z, Khurana M, Tan H K, and Linga P, Chem Eng J 342 (2018) 9. https://doi.org/10.1016/j.cej.2018.01.120

    Article  CAS  Google Scholar 

  29. Salmin D C, Estanga D, and Koh C A, Fuel 319 (2022) 122862. https://doi.org/10.1016/j.fuel.2021.122862

    Article  CAS  Google Scholar 

  30. Sayani J K S, Lal B, and Pedapati S R, Arch Comput Methods Eng 29 (2022) 2171. https://doi.org/10.1007/s11831-021-09651-1

    Article  Google Scholar 

  31. Zerpa LE, A Practical Model to Predict Gas Hydrate Formation, Dissociation and Transportability in Oil and Gas Flowlines, PhD Thesis, Colorado School of Mines (Golden, Colorado USA) 2013. https://repository.mines.edu/handle/11124/78776. Accessed 2 Nov 2022.

  32. Clathrate Hydrate Physical Property Database, https://gashydrates.nist.gov/. Accessed 2 Nov 2022.

  33. Khan MNK, Phase equilibria modeling of inhibited gas hydrate systems including salts: applications in flow assurance, seawater desalination and gas separation, PhD Thesis, Colorado School of Mines (Golden, Colorado, USA) 2016, https://repository.mines.edu/handle/11124/170013. Accessed 2 Nov 2022.

  34. Hu Y, Makogon T Y, Karanjkar P, Lee K-H, Lee B R, and Sum A K, J Chem Eng Data 62 (2017) 1910. https://doi.org/10.1021/acs.jced.7b00292

    Article  CAS  Google Scholar 

  35. Khan M N, Warrier P, Peters C J, and Koh C A, J Nat Gas Sci Eng 35 (2016) 1355. https://doi.org/10.1016/j.jngse.2016.03.092

    Article  CAS  Google Scholar 

  36. Cai J, Wang X-H, Xiao P, Tang H, Liu B, Sun C-Y, and Chen G-J, Fuel 333 (2023) 126282. https://doi.org/10.1016/j.fuel.2022.126282

    Article  CAS  Google Scholar 

  37. Ward Z T, Phase Equilibria of gas hydrates containing hydrogen sulfide and carbon dioxide, PhD Thesis, Colorado School of Mines (Golden, Colorado, USA) 2015. https://repository.mines.edu/handle/11124/20280. Accessed 28 Jun 2023.

  38. Lafond P G, Olcott K A, Sloan E D, Koh C A, and Sum A K, J Chem Thermodyn 48 (2012) 1. https://doi.org/10.1016/j.jct.2011.12.023

    Article  CAS  Google Scholar 

  39. Nielsen R B, and Bucklin R W, Hydrocarbon Process., 62 (1983) 71–78, https://www.osti.gov/biblio/5874635

  40. Carroll J, Natural Gas Hydrates: A Guide for Engineers, 4th Edition, Gulf Professional Publishing, 2020. ISBN: 9780128217719. https://doi.org/10.1016/C2019-0-04277-X

  41. van der Waals J H, and Platteeuw J C, in Prigogine I (ed), Advances in Chemical Physics, Volume 2, Wiley. 1958, ISBN:9780470143483. https://doi.org/10.1002/9780470143483.ch1

  42. Ballard A L, and Sloan E D, Fluid Phase Equilib 194–197 (2002) 371. https://doi.org/10.1016/S0378-3812(01)00697-5

    Article  Google Scholar 

  43. Parrish W R, and Prausnitz J M, Ind Eng Chem Process Des Dev 11 (1972) 26. https://doi.org/10.1021/i260041a006

    Article  CAS  Google Scholar 

  44. Klauda J B, and Sandler S I, Chem Eng Sci 58 (2003) 27. https://doi.org/10.1016/S0009-2509(02)00435-9

    Article  CAS  Google Scholar 

  45. Martin A, and Peters C J, J Phys Chem B 113 (2009) 7548. https://doi.org/10.1021/jp807367j

    Article  CAS  Google Scholar 

  46. Poling B E, Prausnitz J M, and O’Connell J P, The Properties of Gases and Liquids, 5th Edition, McGraw-Hill Education, New York (2001). ISBN: 9780070116825. DOI: https://doi.org/10.1036/0070116822

  47. Debye P, and Hückel E, Physikalische Z 24 (1923) 185.

    CAS  Google Scholar 

  48. Bromley L A, AIChE J 19 (1973) 313. https://doi.org/10.1002/aic.690190216

    Article  CAS  Google Scholar 

  49. Pitzer K S, J Phys Chem 77 (1973) 268. https://doi.org/10.1021/j100621a026

    Article  CAS  Google Scholar 

  50. Khan M N, Warrier P, Creek J L, Peters C J, and Koh C A, J Nat Gas Sci Eng 94 (2021) 104083. https://doi.org/10.1016/j.jngse.2021.104083

    Article  CAS  Google Scholar 

  51. Meragawi S E, Diamantonis N I, Tsimpanogiannis I N, and Economou I G, Fluid Phase Equilib 413 (2016) 209. https://doi.org/10.1016/j.fluid.2015.12.003

    Article  CAS  Google Scholar 

  52. Lira C T, Elliott R, Gupta S, and Chapman W G, Ind Eng Chem Res 61 (2022) 15678. https://doi.org/10.1021/acs.iecr.2c02058

    Article  CAS  Google Scholar 

  53. Russo J, Romano F, and Tanaka H, Nat Mat 13 (2014) 733. https://doi.org/10.1038/nmat3977

    Article  CAS  Google Scholar 

  54. Cox S J, Kathmann S M, Slater B, and Michaelides A, J Chem Phys 142 (2015) 184704. https://doi.org/10.1063/1.4919714

    Article  CAS  Google Scholar 

  55. Ohmura R, Ogawa M, Yasuoka K, and Mori Y H, J Phys Chem B 107 (2003) 5289. https://doi.org/10.1021/jp027094e

    Article  CAS  Google Scholar 

  56. Takeya S, Hori A, Hondoh T, and Uchida T, J Phys Chem B 104 (2000) 4164. https://doi.org/10.1021/jp993759+

    Article  CAS  Google Scholar 

  57. Guo G-J, and Rodger P M, J Phys Chem B 117 (2013) 6498. https://doi.org/10.1021/jp3117215

    Article  CAS  Google Scholar 

  58. Bagherzadeh S A, Alavi S, Ripmeester J, and Englezos P, J Chem Phys 142 (2015) 214701. https://doi.org/10.1063/1.4920971

    Article  CAS  Google Scholar 

  59. Maeda N, J Phys Chem C 122 (2018) 11399. https://doi.org/10.1021/acs.jpcc.8b02416

    Article  CAS  Google Scholar 

  60. Zeng H, Wilson L D, Walker L K, and Ripmeester J A, J Am Chem Soc 128 (2006) 2844. https://doi.org/10.1021/ja0548182

    Article  CAS  Google Scholar 

  61. Zeng H, Moudrakovski I L, Ripmeester J A, and Walker V K, AIChE J 52 (2006) 3304. https://doi.org/10.1002/aic.10929

    Article  CAS  Google Scholar 

  62. Sloan E D, and Fleyfel F, AIChE J 37 (1991) 1281. https://doi.org/10.1002/aic.690370902

    Article  CAS  Google Scholar 

  63. Radhakrishnan R, and Trout B L, J Chem Phys 117 (2002) 1786. https://doi.org/10.1063/1.1485962

    Article  CAS  Google Scholar 

  64. Jacobson L C, Hujo W, and Molinero V, J Phys Chem B 114 (2010) 13796. https://doi.org/10.1021/jp107269q

    Article  CAS  Google Scholar 

  65. Jacobson L C, Hujo W, and Molinero V, J Am Chem Soc 132 (1811) 11806. https://doi.org/10.1021/ja1051445

    Article  CAS  Google Scholar 

  66. Walsh M R, Koh C A, Sloan E D, Sum A K, and Wu D T, Science 326 (2009) 1095. https://doi.org/10.1126/science.1174010

    Article  CAS  Google Scholar 

  67. Zhang Z, Kusalik P G, and Guo G-J, Phys Chem Chem Phys 20 (2018) 24535. https://doi.org/10.1039/C8CP04466J

    Article  CAS  Google Scholar 

  68. Guo G-J, and Zhang Z, Commun Chem 4 (2021) 102. https://doi.org/10.1038/s42004-021-00539-6

    Article  Google Scholar 

  69. Zhang Z, Walsh M R, and Guo G-J, Phys Chem Chem Phys 17 (2015) 8870. https://doi.org/10.1039/C5CP00098J

    Article  CAS  Google Scholar 

  70. Bai D, Chen G, Zhang X, and Wang W, Langmuir 27 (2011) 5961. https://doi.org/10.1021/la105088b

    Article  CAS  Google Scholar 

  71. Bai B, Chen G, Zhang X, Sum A K, and Wang W, Sci Rep 5 (2015) 12747. https://doi.org/10.1038/srep12747

    Article  CAS  Google Scholar 

  72. Englezos P, Kalogerakis N, Dholabhai P D, and Bishnoi P R, Chem Eng Sci 42 (1987) 2647. https://doi.org/10.1016/0009-2509(87)87015-X

    Article  CAS  Google Scholar 

  73. Englezos P, Kalogerakis N, Dholabhai P D, and Bishnoi P R, Chem Eng Sci 42 (1987) 2659. https://doi.org/10.1016/0009-2509(87)87016-1

    Article  CAS  Google Scholar 

  74. Freer E M, Selim M S, and Sloan E D, Fluid Phase Equilib 185 (2001) 65. https://doi.org/10.1016/S0378-3812(01)00457-5

    Article  CAS  Google Scholar 

  75. Mochizuki T, and Mori Y H, J Cryst Growth 290 (2006) 642. https://doi.org/10.1016/j.jcrysgro.2006.01.036

    Article  CAS  Google Scholar 

  76. Vysniauskas A, and Bishnoi P R, Chem Eng Sci 38 (1983) 1061. https://doi.org/10.1016/0009-2509(83)80027-X

    Article  CAS  Google Scholar 

  77. Vysniauskas A, and Bishnoi P R, Chem Eng Sci 40 (1985) 299. https://doi.org/10.1016/0009-2509(85)80070-1

    Article  CAS  Google Scholar 

  78. Zerpa L E, Sloan E D, Sum A K, and Koh C A, J Pet Sci Eng 98–99 (2012) 122. https://doi.org/10.1016/j.petrol.2012.08.017

    Article  CAS  Google Scholar 

  79. Li M, Li K, Yang L, Su Y, Zhao J, and Song Y, J Phys Chem Lett 13 (2022) 400. https://doi.org/10.1021/acs.jpclett.1c03857

    Article  CAS  Google Scholar 

  80. Cruz F J A L, and Mota J P B, Phys Chem Chem Phys 23 (2021) 16033. https://doi.org/10.1039/D1CP00893E

    Article  CAS  Google Scholar 

  81. Michalis V K, Costandy J, Tsimpanogiannis I N, Stubos A K, and Economou I G, J Chem Phys 142 (2015) 044501. https://doi.org/10.1063/1.4905572

    Article  CAS  Google Scholar 

  82. Luis D P, García-González A, and Saint-Martin H, Int J Mol Sci 17 (2016) 378. https://doi.org/10.3390/ijms17060378

    Article  CAS  Google Scholar 

  83. Barwood M T J, Metaxas P J, Lim V W S, Sampson C C, Johns M L, Aman Z M, and May E F, Chem Eng J 450 (2022) 137895. https://doi.org/10.1016/j.cej.2022.137895

    Article  CAS  Google Scholar 

  84. Zhang Z, Kusalik P G, Wu N, Liu C, and Ning F, ACS Sustain Chem Eng 10 (2022) 11597. https://doi.org/10.1021/acssuschemeng.2c03428

    Article  CAS  Google Scholar 

  85. Wang D, Li D, Kelland M A, Cai H, Wang J, Xu P, Lu P, and Dong J, Langmuir 38 (2022) 4774. https://doi.org/10.1021/acs.langmuir.2c00472

    Article  CAS  Google Scholar 

  86. Lim V W S, Metaxas P J, Johns M L, Haandrikman G, Crosby D, Aman Z M, and May E F, Chem Eng J 411 (2021) 128478. https://doi.org/10.1016/j.cej.2021.128478

    Article  CAS  Google Scholar 

  87. Hall S W, Leines G D, Sarupria S, and Rogal J, J Chem Phys 156 (2022) 2009. https://doi.org/10.1063/5.0080053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CAK would like to thank current and past CSM Hydrate Consortium members for their support. PW would like to thank Prof. P C Kapur for his support and guidance during PW’s tenure at the Tata R&D and Design Center, Pune, India (2005-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Warrier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Warrier, P. & Koh, C.A. An Overview of Thermodynamics and Growth Kinetics of Gas Hydrate Systems. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-03095-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03095-w

Keywords

Navigation