Skip to main content
Log in

In Retrospect: Some Peculiarities Observed in the Mechanical Activation of Ground-Granulated Blast Furnace Slag and Fly Ash

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The focus of this paper is on the mechanical activation of aluminosilicate wastes, namely ground-granulated blast furnace slag (GGBFS) and fly ash (FA). The subject is of relevance to the development of improved blended cements and geopolymers. The presence of large quantities of amorphous phases in these materials makes them unique and challenging from the point of view of characterisation. Interesting findings, some of which were first-time discoveries, are reviewed with emphasis on the role of the milling device (mill type, milling energy, and environment), characterisation challenges, and the manifestation of mechanically induced reactivity. The relative importance of mechanical activation vis-à-vis reaction temperature is highlighted based on calorimetric maps for the geopolymerisation of fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The suffix S with reference number means that it refers to the list given with supplementary Table 1.

References

  1. Momber A W, J Mater Sci 45 (2010) 750. https://doi.org/10.1007/s10853-009-3996-4

    Article  CAS  Google Scholar 

  2. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutková E, Gaffet E, Gotor F J, and Kumar R, Chem Soc Rev 42 (2013) 7571. https://doi.org/10.1039/c3cs35468g

    Article  CAS  Google Scholar 

  3. Baláž P, Mechanochemistry in nanoscience and minerals engineering, Springer-Verlag, Berlin Heidelberg (2008).

    Google Scholar 

  4. Boldyreva E, Faraday Discuss 241 (2022) 9. https://doi.org/10.1039/d2fd00149g

    Article  CAS  Google Scholar 

  5. Michalchuk A A, Boldyreva E V, Belenguer A M, Emmerling F, and Boldyrev V V, Front Chem 9 (2021) 359. https://doi.org/10.3389/FCHEM.2021.685789/BIBTEX

    Article  Google Scholar 

  6. Senna M, ChemTexts 3 (2017) 1. https://doi.org/10.1007/s40828-017-0041-0

    Article  CAS  Google Scholar 

  7. Pagola S, Crystals 13 (2023) 124. https://doi.org/10.3390/CRYST13010124

    Article  CAS  Google Scholar 

  8. Singla R, Alex T C, and Kumar R, Powder Technol 360 (2020) 337. https://doi.org/10.1016/J.POWTEC.2019.10.035

    Article  CAS  Google Scholar 

  9. Baláž M (2021) Environmental Mechanochemistry, 1st ed. Environ Mechanochemistry. doi: https://doi.org/10.1007/978-3-030-75224-8

  10. Juhász AZ, Opoczky L (1990) Mechanical Activation of Minerals by Grinding, Pulverizing and Morphology of Particles. Ellis Horwood Limited

  11. Taylor H F W, Cement chemistry, Thomas Telford Publishing, London (1997).

    Book  Google Scholar 

  12. Sekulić Ž, Popov S, Uričić M, and Rosić A, Mater Lett 39 (1999) 115. https://doi.org/10.1016/S0167-577X(98)00226-2

    Article  Google Scholar 

  13. Matthes W, Vollpracht A, Villagrán Y, Kamali-Bernard S, Hooton D, Gruyaert E, Soutsos M, and De Belie N, RILEM State Art Rep 25 (2018) 1. https://doi.org/10.1007/978-3-319-70606-1_1/COVER

    Article  CAS  Google Scholar 

  14. Scrivener K L, John V M, and Gartner E M, Cem Concr Res 114 (2018) 2. https://doi.org/10.1016/J.CEMCONRES.2018.03.015

    Article  CAS  Google Scholar 

  15. Opoczky L O, Verdes S, and Török K M, Powder Technol 48 (1986) 91. https://doi.org/10.1016/0032-5910(86)80069-9

    Article  CAS  Google Scholar 

  16. Malhotra V M, and Hammings R T, Cem Concr Compos 17 (1995) 23. https://doi.org/10.1016/0958-9465(95)95757-Q

    Article  Google Scholar 

  17. Helmuth R A, Whiting D A, Dubovoy V S, Tang F J, and Love H, ASTM Spec Tech Publ (1986). https://doi.org/10.1520/STP36394S

    Article  Google Scholar 

  18. Giergiczny Z, Werynska A (1989) Influence of fineness of fly ashes on their hydraulic activity. ACI Spec Publ SP-114. https://doi.org/10.14359/1869

  19. Energetically modified cement. In: Wikipedia. https://en.wikipedia.org/wiki/Energetically_modified_cement. Accessed 24 Jan 2023

  20. Sobolev K, Mater Technol Adv Perform Mater 14 (1999) 191. https://doi.org/10.1080/10667857.1999.11752838

    Article  CAS  Google Scholar 

  21. Atiş C D, Görür E B, Karahan O K, Bilim C, İlkentapar S E, and Luga E, Constr Build Mater 96 (2015) 673. https://doi.org/10.1016/J.CONBUILDMAT.2015.08.089

    Article  Google Scholar 

  22. Kumar R, Kumar S, and Mehrotra S P, Mechanical activation in blended cement processing. in Front, (eds) Kumar R, Srikanth S, and Mehrotra S P, Mechanochemistry Mech Alloy, CSIR-National Metallurgical Laboratory, Jamshedpur, India, Jamshedpur (2011), p 294.

    Google Scholar 

  23. Kumar R, Kumar S, Alex T C, Srikanth S, and Mehrotra S P, Process innovations using mechanical activation of minerals and wastes. in Exp Theor Approaches to Mod, (eds) Mulas G, and Delogu F, Mechanochemistry, Transworld Research Network, Chennai (2010), p 255.

    Google Scholar 

  24. Kumar S, Kumar R (2010) Tailoring geopolymer properties through mechanical activation of fly ash. In: Zachar J, Claisse P, Naik TR, Ganjian E (eds) Second Int Conf Sustain Constr Mater Technol. June 28 - June 30, 2010, Univ. Politec. delle Marche, Ancona, Italy. Coventry University and The University of Wisconsin Milwaukee Centre for By-products Utilization, p 607

  25. Kumar S, Kumar R, Bandopadhyay A, Alex T C, Kumar B R, Das S K, and Mehrotra S P, Cem Concr Compos 30 (2008) 679. https://doi.org/10.1016/J.CEMCONCOMP.2008.05.005

    Article  CAS  Google Scholar 

  26. Kumar S, Kumar R, and Bandopadhyay A, Resour Conserv Recycl 48 (2006) 301. https://doi.org/10.1016/J.RESCONREC.2006.03.003

    Article  Google Scholar 

  27. Kumar S, Mucsi G, Kristály F, and Pekker P, Adv Powder Technol 28 (2017) 805. https://doi.org/10.1016/J.APT.2016.11.027

    Article  CAS  Google Scholar 

  28. Kumar S, García-Triñanes P, Teixeira-Pinto A, and Bao M, Cem Concr Compos 40 (2013) 7. https://doi.org/10.1016/J.CEMCONCOMP.2013.03.026

    Article  CAS  Google Scholar 

  29. Mucsi G, Kumar S, Csőke B, Kumar R, Molnár Z, Rácz Á, Mádai F, and Debreczeni Á, Int J Miner Process 143 (2015) 50. https://doi.org/10.1016/J.MINPRO.2015.08.010

    Article  CAS  Google Scholar 

  30. Kumar R, Kumar S, Alex T C, and Singla R, J Therm Anal Calorim 136 (2019) 1117. https://doi.org/10.1007/S10973-018-7736-3/FIGURES/9

    Article  CAS  Google Scholar 

  31. Kumar R, Kumar S, Badjena S, and Mehrotra S P, Metall Mater Trans B Process Metall Mater Process Sci 36 (2005) 873. https://doi.org/10.1007/s11663-005-0089-x

    Article  Google Scholar 

  32. Kumar R, Kumar S, Das A, Mishra T K, Cholavandan V, and Mehrotra S P, Studies on reactivity of classified and mechanically activated fly ash (Project OLP- 064), Jamshedpur, India (2007).

    Google Scholar 

  33. Kumar R, Kumar S, and Mehrotra S P, Resour Conserv Recycl 52 (2007) 157. https://doi.org/10.1016/j.resconrec.2007.06.007

    Article  Google Scholar 

  34. Kumar S, Bandopadhyay A, Rajinikanth V, Alex T C, and Kumar R, J Mater Sci 39 (2004) 3449. https://doi.org/10.1023/B:JMSC.0000026948.85440.cc

    Article  CAS  Google Scholar 

  35. Kumar S, Kumar R, and Mehrotra S P, Geopolymers, fly ash reactivity and mechanical activation. in Front Mechanochemistry Mech Alloy, (eds) Kymar R, Srikanth S, and Mehrotra S P, CSIR-National Metallurgical Laboratory, Jamshedpur, India, Jamshedpur (2011), p 320.

    Google Scholar 

  36. Kumar S, Kumar R, Alex T C, Bandopadhyay A, and Mehrotra S P, Adv Appl Ceram 106 (2007) 120. https://doi.org/10.1179/174367607X159293

    Article  CAS  Google Scholar 

  37. Kumar S, and Kumar R, Ceram Int 37 (2011) 533. https://doi.org/10.1016/j.ceramint.2010.09.038

    Article  CAS  Google Scholar 

  38. Boldyrev V V, Polov S V, and Goldberg E L, Int J Min Process 44–45 (1996) 181.

    Article  Google Scholar 

  39. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Adv Powder Technol 19 (2008) 483. https://doi.org/10.1016/s0921-8831(08)60914-0

    Article  CAS  Google Scholar 

  40. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Miner Process Extr Metall Rev 37 (2016) 1. https://doi.org/10.1080/08827508.2015.1055626

    Article  CAS  Google Scholar 

  41. Frances C, Le Bolay N, Belaroui K, and Pons M N, Int J Miner Process 61 (2001) 41. https://doi.org/10.1016/S0301-7516(00)00025-9

    Article  CAS  Google Scholar 

  42. Guzzo P L, Ţălu Ş, Kulesza S, and Bramowicz M, Jom 75 (2023) 1333. https://doi.org/10.1007/s11837-022-05687-1

    Article  Google Scholar 

  43. Tromans D, and Meech J A, Miner Eng 15 (2002) 263. https://doi.org/10.1016/S0892-6875(02)00017-1

    Article  CAS  Google Scholar 

  44. Wang A, Zheng Y, Zhang Z, Liu K, Li Y, Shi L, and Sun D, Engineering 6 (2020) 695. https://doi.org/10.1016/j.eng.2019.08.019

    Article  CAS  Google Scholar 

  45. Suraneni P, Burris L, Shearer C R, and Hooton R D, ACI Mater J 118 (2021) 157. https://doi.org/10.14359/51725994

    Article  Google Scholar 

  46. Li Z, Xu G, and Shi X, Fuel 301 (2021) 121031. https://doi.org/10.1016/j.fuel.2021.121031

    Article  CAS  Google Scholar 

  47. Giergiczny Z, Cem Concr Res 124 (2019) 10526. https://doi.org/10.1016/j.cemconres.2019.105826

    Article  CAS  Google Scholar 

  48. Alex TC, Kumar R, Roy SK, Mehrotra SP (2012) Mechanical activation of Al-oxyhydroxide minerals - Physicochemical changes, reactivity and relevance to bayer process. In: Suarez CE (ed) Light Met. 2012. pp 15–19

  49. Hoffmann U, Horst C, and Kunz U, Reactive Comminution. in Integr, (eds) Sundmacher K, Kienle A, and Seidel-Morgenstern A, Chem. Process-Synth Oper Anal Control, Wiley-VCH Verlag GmbH & Co KGaA (2005), pp 407–436.

    Google Scholar 

  50. Kwade A, Powder Technol 105 (1999) 14. https://doi.org/10.1016/S0032-5910(99)00113-8

    Article  CAS  Google Scholar 

  51. Kwade A, Chem Eng Technol 26 (2003) 199. https://doi.org/10.1002/ceat.200390029

    Article  CAS  Google Scholar 

  52. Kwade A, and Schwedes J, Powder Technol 122 (2002) 109. https://doi.org/10.1016/S0032-5910(01)00406-5

    Article  CAS  Google Scholar 

  53. Mucsi G, Chem Eng Res Des 148 (2019) 460. https://doi.org/10.1016/J.CHERD.2019.06.029

    Article  CAS  Google Scholar 

  54. Mehta P K, Spec Publ 114 (1989) 1. https://doi.org/10.14359/1835

    Article  CAS  Google Scholar 

  55. Peuker U A, Mater Sci Forum 959 (2019) 177. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.959.177

    Article  Google Scholar 

  56. Wang Y, He X, Su Y, Tan H, Yang J, Lan M, Ma M, and Strnadel B, Constr Build Mater 167 (2018) 96. https://doi.org/10.1016/J.CONBUILDMAT.2018.01.178

    Article  CAS  Google Scholar 

  57. Song S, and Jennings H M, Cem Concr Res 29 (1999) 159. https://doi.org/10.1016/S0008-8846(98)00212-9

    Article  CAS  Google Scholar 

  58. Singla R, Kumar S, and Alex T C, Waste Biomass Valorizat 11 (2020) 2983. https://doi.org/10.1007/s12649-019-00580-6

    Article  CAS  Google Scholar 

  59. Garbev K, Leon B, Beuchle G, and Peter S, Wasser- und Geotechnol Nachrichten aus dem Inst für Tech Chemie 1 (2002) 19.

    Google Scholar 

  60. Black L, Garbev K, and Gee I, Cem Concr Res 38 (2008) 745. https://doi.org/10.1016/J.CEMCONRES.2008.02.003

    Article  CAS  Google Scholar 

  61. Stachurski H Z, Fundamentals of amorphous solids-structure and properties, Wiley-VCH Verlag GmbH & Co., Weinheim (2015).

    Google Scholar 

  62. Louzguine-Luzgin D V, Trifonov A S, Ivanov Y P, Lu A K, Lubenchenko A V, and Greer A L, Sci Rep 111 (2021) 1. https://doi.org/10.1038/s41598-021-92907-4

    Article  CAS  Google Scholar 

  63. Jang D, and Greer J R, Nat Mater 93 (2010) 215. https://doi.org/10.1038/nmat2622

    Article  CAS  Google Scholar 

  64. Grabias-Blicharz E, and Franus W, Sci Total Environ (2022). https://doi.org/10.1016/j.scitotenv.2022.160529

    Article  Google Scholar 

  65. Cristelo N, Tavares P, Lucas E, Miranda T, and Oliveira D, Compos Part B Eng 103 (2016) 1. https://doi.org/10.1016/J.COMPOSITESB.2016.08.001

    Article  CAS  Google Scholar 

  66. Temuujin J, Williams R P, and van Riessen A, J Mater Process Technol 209 (2009) 5276. https://doi.org/10.1016/j.jmatprotec.2009.03.016

    Article  CAS  Google Scholar 

  67. Kanuchova M, Drabova M, Sisol M, Mosej J, Kozakova L, and Skvarla J, Environ Prog Sustain Energy 35 (2016) 1338. https://doi.org/10.1002/EP.12353

    Article  CAS  Google Scholar 

  68. Linberg K, Röder B, Al-Sabbagh D, Emmerling F, and Michalchuk A A, Faraday Discuss 241 (2023) 178. https://doi.org/10.1039/D2FD00115B

    Article  Google Scholar 

  69. Andersen J M, and Mack J, Chem Sci 8 (2017) 5447. https://doi.org/10.1039/c7sc00538e

    Article  CAS  Google Scholar 

  70. Brügner O, and Walter M, Phys Rev Mater 2 (2018) 1. https://doi.org/10.1103/PhysRevMaterials.2.113603

    Article  Google Scholar 

  71. Liu X, Shao Y, Zhang Y, Meng G, Zhang T, and Wang F, Corros Sci 90 (2015) 463. https://doi.org/10.1016/j.corsci.2014.04.016

    Article  CAS  Google Scholar 

  72. Alex T C, Sasi Kumar C, Kailath A J, Kumar R, Roy S K, and Mehrotra S P, Metall Mater Trans B 42 (2011) 592. https://doi.org/10.1007/s11663-011-9494-5

    Article  CAS  Google Scholar 

  73. Alex T C, Kumar R, Roy S K, and Mehrotra S P, Hydrometallurgy 144–145 (2014) 99. https://doi.org/10.1016/J.HYDROMET.2014.01.017

    Article  Google Scholar 

  74. Kumar R, and Alex T C, Metall Mater Trans B 46 (2015) 1684. https://doi.org/10.1007/s11663-015-0343-9

    Article  CAS  Google Scholar 

  75. Srikanth S, Devi V L, and Kumar R, Hydrometallurgy 165 (2016) 125. https://doi.org/10.1016/j.hydromet.2015.09.024

    Article  CAS  Google Scholar 

  76. Kaminsky Y D, Lyakhov N Z, and Kopylov N I, On high temperature leaching of wolframite. in Nonferrous Extr Metall New Millenn, (eds) Rao P R, Kumar R K, Srikanth S, and Goswami N G, National Metallurgical Laboratory, Jamshedpur (1999), p 21.

    Google Scholar 

  77. Kumar R, Alex TC, Khan ZH, et al (2005) Mechanical activation of bauxite - Potential and prospects in the Bayer process. In: Kvande H (ed) Light Met. 2005. The Minerals, Metals and Materials Society, Warrendale, pp 77–79

Download references

Acknowledgements

The author is grateful to the entire team of NMITLI project at CSIR-National Metallurgical Laboratory, Jamshedpur (India), notably Dr. Sanjay Kumar (presently Head, MER Division), Dr. T.C. Alex (Mechanochemistry Group), Dr. B. Ravi Kumar, Dr. Swapan Das, Dr. T. Mishra (Characterisation team), and I.B. Mishra (Civil Engineering). Guidance and support from Professor S.P. Mehrotra (formerly Director, CSIR-NML) is gratefully acknowledged. Late Prof. Ramachandra Rao and Prof. P.C. Kapur mentored the project. The author would like to acknowledge support from Professor Rajiv Shekhar (former Director, IIT-ISM, Dhanbad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 190 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R. In Retrospect: Some Peculiarities Observed in the Mechanical Activation of Ground-Granulated Blast Furnace Slag and Fly Ash. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-03037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03037-6

Keywords

Navigation