Skip to main content
Log in

Mechanical and Corrosion Behaviour of Friction Stir Welded 5083–6061 Aluminium Alloy Joints: Effect of Base Material Position

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study investigated the mechanical and corrosion properties of friction stir welded (FSWed) dissimilar AA5083-AA6061 joints by interchanging base material position on the advancing side (AS) and retreating side (RS). The dissimilar joints were also compared with FSWed similar joints of both base materials. The macrostructural images revealed that material mixing patterns in FSWed joints varied greatly depending on where the base metals were positioned. Results indicated that the mechanical and corrosion properties obtained at the stir zone were higher for the given aluminium alloys when placing AA5083-H111 on the AS and AA6061-T6 on the RS. AA5083-AA5083 joint fractured near the centre of the weld, while fractures in all other joints occurred in the heat-affected zone towards the AA6061 side alloy. Corrosion tests showed that dissimilar FSWed joint stir zone regions showed lower corrosion resistance than similar joints. In dissimilar joints, corrosion was initiated from the FSWed borderline and around intermetallic particles precipitated on the AA6061 side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burger G B, Gupta A K, Jeffrey P W, and Lloyd D J, Mater Charact 35 (1995) 23.

    Article  CAS  Google Scholar 

  2. Lumley R N, Fundamentals of aluminium metallurgy: Production, processing and applications, Epub ahead of print (2010).

  3. Liu G, Murr L E, Niou C S, McClure J C, and Vega F R, Scr Mater 37 (1997) 355.

    Article  CAS  Google Scholar 

  4. Kumar K K, Kumar A, and Satyanarayana M V N V, Proc Inst Mech Eng Part C J Mech Eng Sci 236 (2022) 2901.

    Article  CAS  Google Scholar 

  5. Lee W B, Yeon Y M, and Jung S B, Scr Mater 49 (2003) 423.

    Article  CAS  Google Scholar 

  6. Park S K, Hong S T, Park J H, Park K Y, Kwon Y J, and Son H J, Sci Technol Weld Join 15 (2010) 331.

    Article  CAS  Google Scholar 

  7. Svensson L E, Karlsson L, Larsson H, Karlsson B, Fazzini M, and Karlsson J, Sci Technol Weld Join 5 (2000) 285.

    Article  CAS  Google Scholar 

  8. Peel M J, Steuwer A, and Withers P J, Metall Mater Trans A Phys Metall Mater Sci 37 (2006) 2195.

    Article  Google Scholar 

  9. Gungor B, Kaluc E, Taban E, and Sik A, Mater Des 56 (2014) 84.

    Article  CAS  Google Scholar 

  10. Zhang C, Huang G, Cao Y, Zhu Y, and Liu Q, J Manuf Process 37 (2019) 470.

    Article  Google Scholar 

  11. Fahimpour V, Sadrnezhaad S K, and Karimzadeh F, Mater Des 39 (2012) 329.

    Article  CAS  Google Scholar 

  12. Bagheri Hariri M, Gholami Shiri S, Yaghoubinezhad Y, and Rahvard M M, Mater Des 50 (2013) 620.

    Article  CAS  Google Scholar 

  13. Donatus U, Thompson G E, Zhou X, Wang J, Cassell A, and Beamish K, Mater Charact 107 (2015) 85.

    Article  CAS  Google Scholar 

  14. Ahmed M M Z, Ataya S, El-Sayed Seleman M M, Ammar H R, and Ahmed E, J Mater Process Technol 242 (2017) 77.

    Article  CAS  Google Scholar 

  15. Kumar K K, Kumar A, and Satyanarayana M V N V, Proc Inst Mech Eng Part L J Mater Des Appl 235 (2021) 2692.

    CAS  Google Scholar 

  16. Wang B, Lei B B, Zhu J X, Feng Q, Wang L, and Wu D, Mater Des 87 (2015) 593.

    Article  CAS  Google Scholar 

  17. Kartsonakis I A, Dragatogiannis D A, Koumoulos E P, Karantonis A, and Charitidis C A, Mater Des 102 (2016) 56.

    Article  CAS  Google Scholar 

  18. Choi D H, Ahn B W, Quesnel D J, and Jung S B, Intermetallics 35 (2013) 120.

    Article  CAS  Google Scholar 

  19. Malopheyev S, Vysotskiy I, Kulitskiy V, Mironov S, and Kaibyshev R, Mater Sci Eng A 662 (2016) 136.

    Article  CAS  Google Scholar 

  20. Goswami R, Spanos G, Pao P S, and Holtz R L, Mater Sci Eng A 527 (2010) 1089.

    Article  Google Scholar 

  21. Blanc C, and Mankowski G, Corros Sci 39 (1997) 949.

    Article  Google Scholar 

  22. Mehdizade M, Eivani A R, and Soltanieh M, J Alloys Compd 838 (2020) 155464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kethavath Kranthi Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.K., Kumar, A. & Nagu, K. Mechanical and Corrosion Behaviour of Friction Stir Welded 5083–6061 Aluminium Alloy Joints: Effect of Base Material Position. Trans Indian Inst Met 76, 1985–1996 (2023). https://doi.org/10.1007/s12666-023-02906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02906-4

Keywords

Navigation