Skip to main content

Advertisement

Log in

Elastic–Plastic Fracture Toughness of Wrought Dual-Phase Non-equiatomic High-Entropy Alloy (HEA) for Structural Applications

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A non-equiatomic dual-phase metastable high-entropy alloy (HEA), Fe50Mn30Co10Cr10, with FCC-to-HCP transformation has attracted attention due to its excellent combination of high strength and ductility. The present work is focussed on determining the fracture toughness of this alloy using a crack tip opening displacement (CTOD) test method. While fracture toughness of single-phase metastable FCC HEAs and non-equiatomic metastable HEA showing FCC-to-BCC transformation have been investigated, the fracture toughness characterization of a dual-phase, metastable, HEA exhibiting FCC-to-HCP transformation has not been conducted. In this study, the damage-tolerance properties at room temperature, viz., strength (UTS ~ 800 MPa), ductility (total elongation at fracture, 50%), and an elastic–plastic fracture toughness (KJIc value, 205 MPa √m), have been determined. Fractography performed on the fractured CTOD test sample revealed ductile mode of fracture. Oxide inclusion particles in the size range of 2–4.2 μm were found to be uniformly distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Taylor J, Mehmanparast A, Kulka R, Moore P, Xu L, and Hossein G, Theor. Appl. Fract. Mech. 110 (2020) 102799. https://doi.org/10.1016/j.tafmec.2020.102799

    Article  CAS  Google Scholar 

  2. Han K, Shuai J, Deng X, Kong L, Zhao X, and Sutton M, Eng. Fract. Mech. 124–125 (2014) 167. https://doi.org/10.1016/j.engfracmech.2014.04.014

    Article  Google Scholar 

  3. García T E, Rodríguez C, Belzunce F J, Peñuelas I, and Cuesta I I, Procedia Mater. Sci. 3 (2014) 861. https://doi.org/10.1016/j.mspro.2014.06.140

    Article  CAS  Google Scholar 

  4. Gludovatz B, Science 345 (2014) 1153. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  5. Jo Y H, Doh K Y, Kim D G, Lee K, Kim D W, Sung H, Sohn S S, Lee D, Kim H S, Lee B J, and Lee S, J. Alloys Compd. 809 (2019) 151864. https://doi.org/10.1016/j.jallcom.2019.151864

    Article  CAS  Google Scholar 

  6. Jo Y H, Yang J, Doh K Y, An W, Kim D W, Sung H, Lee D, Kim H S, Sohn S S, and Lee S, J. Alloys Compd. 844 (2020) 156090. https://doi.org/10.1016/j.jallcom.2020.156090

    Article  CAS  Google Scholar 

  7. Ray K K, Roy U, Ray A, Kumari M, and Nath A, Theor. Appl. Fract. Mech. 113 (2021) 102948. https://doi.org/10.1016/j.tafmec.2021.102948

    Article  CAS  Google Scholar 

  8. Seifi M, Li D, Yong Z, Liaw P K, and Lewandowski J J, J. Mater. 67 (2015) 2288. https://doi.org/10.1007/s11837-015-1563-9

    Article  CAS  Google Scholar 

  9. Chen C, Pang S, Cheng Y, and Zhang T, J. Alloys Compd. 659 (2016) 279. https://doi.org/10.1016/j.jallcom.2015.10.258

    Article  CAS  Google Scholar 

  10. Ganji R S, Rajulapati K V, and Rao K B S, Trans. Indian Inst. Met. 73 (2020) 613. https://doi.org/10.1007/s12666-020-01875-2

    Article  CAS  Google Scholar 

  11. Li Z, JOM 69 (2017) 2099. https://doi.org/10.1007/s11837-017-2540-2

    Article  CAS  Google Scholar 

  12. ASTM E1820-13e1 (2019) ASM Int.

  13. Li Z, Pradeep K G, Deng Y, Raabe D, and Tasan C C, Nature 534 (2016) 227. https://doi.org/10.1038/nature17981

    Article  CAS  Google Scholar 

  14. Basu I, Ocelík V, and De Hosson J T M, J. Mater. Res. 33 (2018) 3055. https://doi.org/10.1557/jmr.2018.282

    Article  CAS  Google Scholar 

  15. Nene S S, et al., Sci. Rep. 7 (2017) 1–7. https://doi.org/10.1038/s41598-017-16509-9

    Article  CAS  Google Scholar 

  16. Kalisz D, Migas P, Karbowniczek M, Moskal M, and Hornik A, J. Mater. Eng. Perform. 29 (2019) 1479–1487. https://doi.org/10.1007/s11665-019-04493-2

    Article  CAS  Google Scholar 

  17. Jiang Cen M, Liu Y, Chen X, Wei Zhang H, and Xiang Li Y, China Foundry 16 (2019) 223. https://doi.org/10.1007/s41230-019-9046-1

    Article  Google Scholar 

  18. Li W, Xie D, Li D, Zhang Y, Gao Y, and Liaw P K, Prog. Mater. Sci. 118 (2021) 100777. https://doi.org/10.1016/j.pmatsci.2021.100777

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Meena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, N., Srivastava, V., Srinivas, P. et al. Elastic–Plastic Fracture Toughness of Wrought Dual-Phase Non-equiatomic High-Entropy Alloy (HEA) for Structural Applications. Trans Indian Inst Met 76, 1741–1750 (2023). https://doi.org/10.1007/s12666-022-02845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02845-6

Keywords

Navigation