Skip to main content
Log in

Effect of Molybdenum on the Microstructure and High-Temperature Tribological Properties of Laser Clad CoCrW Coating

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The CoCrW coating modified with 11.0 wt% Mo was prepared by using laser cladding. Meanwhile, the effect of molybdenum on the microstructure and high-temperature tribological properties of coatings was systematically investigated. Tribological tests of coatings were conducted by using a ball-on-disk tribo-tester from 23 to 1000 °C against Si3N4 ball. The Mo showed a solid solution strengthening effect on the coating and promoted the formation of carbides. The phases of the CoCrW-11%Mo coating were composed of γ(fcc), Cr7C3, Cr23C6, Co6Mo6C and Co3Mo and the hardness of the coating was 1.3 times higher than that of CoCrW coating. The friction coefficients of the coatings decreased with the rise of temperature. The wear rates initially increased and then decreased with the increase in temperature. The Mo-modified coating had better tribological properties than the unmodified coating from room temperature to 1000 °C. The coatings showed different wear mechanisms at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo X Q, Liu J, Dai L M, Liu Q Y, Fang D K, Wei A C, and Wang J X, Wear 468 (2021) 203576. https://doi.org/10.1016/j.wear.2020.203576.

    Article  CAS  Google Scholar 

  2. Wang X P, Zhang J, and Zuo JY, Tribol Lett 70 (2022) 62. https://doi.org/10.1007/s11249-022-01603-5.

    Article  Google Scholar 

  3. Cui C, Wu M P, Miao X J, Gong Y L, and Zhao Z S, J Mater Res Technol 15 (2021) 2405. https://doi.org/10.1016/j.jmrt.2021.09.073.

    Article  CAS  Google Scholar 

  4. Shu F Y, Wang B, Zhang S X, Sui S H, Zhang X and Zhao J M, J Mater Eng Perform 30 (2021) 3370. https://doi.org/10.1007/s11665-021-05704-5.

    Article  CAS  Google Scholar 

  5. Renz A, Prakash B, Hardell J, and Lehmann O, Wear, 402 (2018) 148. https://doi.org/10.1016/j.wear.2018.02.013.

    Article  CAS  Google Scholar 

  6. Deng D W, Lu J, and Li X N, Mater Trans 54 (2013) 1851. https://doi.org/10.2320/matertrans.M2013103.

    Article  CAS  Google Scholar 

  7. Weng F, Yu H J, Chen C Z, Liu J L, Zhao L J, Dai J J, and Zhao Z H, J Alloy Compd 692 (2017) 989. https://doi.org/10.1016/j.jallcom.2016.09.071.

    Article  CAS  Google Scholar 

  8. Zhou J, Xie F Q, Li Y Q, and Wu X Q, Adv Mater Res 97–101 (2010) 1510. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1510.

    Article  CAS  Google Scholar 

  9. Motallebzadeh A, Atar E, and Cimenoglu H, Arch Mater Sci Eng 69 (2014) 81.

    Google Scholar 

  10. Motallebzadeh A, Atar E, and Cimenoglu H, Tribol Int 91 (2015) 40. https://doi.org/10.1016/j.triboint.2015.06.006.

    Article  CAS  Google Scholar 

  11. D’Oliveira A S C M, Vilar R, and Feder C G, Appl Surf Sci 201 (2002) 154. https://doi.org/10.1016/s0169-4332(02)00621-9.

    Article  Google Scholar 

  12. Dilawary S A A, Motallebzadeh A, Atar E, and Cimenoglu H, Tribol Int 127 (2018) 288. https://doi.org/10.1016/j.triboint.2018.06.022.

    Article  CAS  Google Scholar 

  13. Wang W R, Wang J Q, Yi H G, Qi W, and Peng Q, Entropy 20 (2018) 908. https://doi.org/10.3390/e20120908.

    Article  CAS  Google Scholar 

  14. Liu S S, Wang Y H, and Zhang W P, Rare Metal Mat Eng 43 (2014) 1041. https://doi.org/10.1016/S1875-5372(14)60097-7.

    Article  CAS  Google Scholar 

  15. Liu R, Yao J H, Zhang Q L, Yao M X, and Collier R, Metall Mater Trans A-Phys Metall Mater Sci 46A (2015) 5504. https://doi.org/10.1007/s11661-015-3132-9.

    Article  CAS  Google Scholar 

  16. Huang P, Liu R, Wu X, and Yao M X, J Eng Mater Technol-Trans ASME 129 (2007) 523. https://doi.org/10.1115/1.2744429.

    Article  CAS  Google Scholar 

  17. Liu Y, Wu Y, Ma Y M, Gao W, Yang G Y, Fu H, Xi N Y, and Chen H, Appl Surf Sci 481 (2019) 761. https://doi.org/10.1016/j.apsusc.2019.02.235.

    Article  CAS  Google Scholar 

  18. Lu S S, Zhou J S, Wang L Q, and Liang J, Surf Coat Technol 424 (2021) 127665. https://doi.org/10.1016/j.surfcoat.2021.127665.

    Article  CAS  Google Scholar 

  19. Yao J H, Ding Y P, Liu R, Zhang Q L, and Wang L, Opt Laser Technol 107 (2018) 32. https://doi.org/10.1016/j.optlastec.2018.05.021.

    Article  CAS  Google Scholar 

  20. Cheng Q R, Shi H C, Zhang P L, Yu Z S, Wu D, He S S, and Tian Y T, Surf Coat Technol 395 (2020) 125810. https://doi.org/10.1016/j.surfcoat.2020.125810.

    Article  CAS  Google Scholar 

  21. Tang M, Pistorius P C, Narra S, and Beuth J L, JOM 68 (2016) 960. https://doi.org/10.1007/s11837-015-1763-3.

    Article  CAS  Google Scholar 

  22. Kuzucu V, Ceylan M, Celik H, and Aksoy I, J Mater Process Technol 69 (1997) 257. https://doi.org/10.1016/s0924-0136(97)00027-7.

    Article  Google Scholar 

  23. Shin J C, Doh J M, Yoon J K, Lee D Y, and Kim J S, Surf Coating Technol 166 (2003) 117. https://doi.org/10.1016/S0257-8972(02)00853-8.

    Article  CAS  Google Scholar 

  24. Cui GJ, Han JR, and Wu GX, Wear 346 (2016) 116. https://doi.org/10.1016/j.wear.2015.11.009.

    Article  CAS  Google Scholar 

  25. Guo C, Zhou J S, Chen J M, Zhao J R, Yu Y J, and Zhou H D, Wear 270 (2011) 492. https://doi.org/10.1016/j.wear.2011.01.003.

    Article  CAS  Google Scholar 

  26. Yao M X, Wu J B C, Yick S, Xie Y, and Liu R, Mater Sci Eng A-Struct Mater Prop Microstruct Process 435 (2006) 78. https://doi.org/10.1016/j.msea.2006.07.054.

    Article  CAS  Google Scholar 

  27. Yin B, Liu G, Zhou H D, Chen J M, and Yan F G, Tribol Lett 37 (2010) 463. https://doi.org/10.1007/s11249-009-9540-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Project Supported by the Shanxi Scholarship Council of China (Grant No. 2021-060) and the National Natural Science Foundation of China (Grant Nos. 51775365, U1910212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongjun Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Cui, G., Cui, H. et al. Effect of Molybdenum on the Microstructure and High-Temperature Tribological Properties of Laser Clad CoCrW Coating. Trans Indian Inst Met 75, 3193–3202 (2022). https://doi.org/10.1007/s12666-022-02724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02724-0

Keywords

Navigation