Skip to main content
Log in

Effect of La2O3 Addition on Microstructure and Tribological Performance of Laser Cladded Ni-WC Coating on S136 Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

La2O3 reinforced Ni-WC coatings were prepared on S136 steel by laser cladding technique. The microstructure and phase of obtained coatings were analyzed using an ultra depth of field microscope and X-ray diffraction, respectively. The effect of La2O3 mass fraction on the microstructure and friction-wear performance of Ni-WC coating was investigated. The results show that the coefficients of frictions (COFs) of Ni-WC-3%La2O3, − 6%La2O3 and − 9%La2O3 are decreased by 26.7%, 34.8% and 22.4% than that of substrate, in which the COF of Ni-WC-6%La2O3 is the smallest among the three kinds of coatings. The wear rates of substrate and Ni-WC-3%La2O3, − 6%La2O3 and − 9%La2O3 coatings are 640.81, 344.78, 402.63, 422.38 μm3·s−1·N−1, respectively, which increase with the increase of La2O3 mass fraction. The wear mechanisms of Ni-WC coatings with the 3%, 6% and 6%La2O3 mass fractions are adhesive wear + oxidation wear, adhesive wear, and adhesive wear + oxidation wear, respectively, showing that the appropriate La2O3 mass fraction plays the role of wear resistance of Ni-WC-La2O3 coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou S F, Zeng X Y, Hu Q W, and Huang Y, J Appl Surf Sci 255 (2008) 1646. https://doi.org/10.1016/j.apsusc.2008.04.003.

    Article  CAS  Google Scholar 

  2. Liu H X, Xu Q, Wang C Q, and Zhang X W, J Alloys Compd 621 (2015) 357. https://doi.org/10.1016/j.jallcom.2014.10.030.

    Article  CAS  Google Scholar 

  3. Kong W C, Li K M, and Hu J, Opt Laser Technol 142 (2021) 107214. https://doi.org/10.1016/j.optlastec.2021.107214.

    Article  CAS  Google Scholar 

  4. Sharma S P, Dwivedi D K, and Jain P K, Wear 267 (2009) 853. https://doi.org/10.1016/j.wear.2008.12.029.

  5. Guo C, Chen J M, Zhou J S, Zhao J R, Wang L Q, Yu Y J, and Zhou H D, Surf Coat Technol 206 (2012) 2064. https://doi.org/10.1016/j.surfcoat.2011.06.005.

    Article  CAS  Google Scholar 

  6. Ravichandran K S, Acta Metall Mater 42 (1994) 143. https://doi.org/10.1016/0956-7151(94)90057-4.

    Article  CAS  Google Scholar 

  7. Wu P, Du H M, Chen X L, Li Z Q, Bai H L, and Jiang E Y, Wear 257 (2004) 142. https://doi.org/10.1016/j.wear.2003.10.019.

    Article  CAS  Google Scholar 

  8. Farahmand P, and Kovacevic R, Surf Coat Technol 276 (2015) 121. https://doi.org/10.1016/j.surfcoat.2015.06.039.

    Article  CAS  Google Scholar 

  9. Zhao N, Tao L, Guo H, and Zhang M Q, Rare Met Mater Eng 46 (2017) 2092. https://doi.org/10.3788/AL20103003.0173.

    Article  CAS  Google Scholar 

  10. Zhao W, and Kong D J, Appl Surf Sci 481 (2019) 161. https://doi.org/10.1016/j.apsusc.2019.03.047.

    Article  CAS  Google Scholar 

  11. Lu M Y, Mead J, Wu Y Q, Russell H, and Huang H, Mater Charact 120 (2016) 337. https://doi.org/10.1016/j.matchar.2016.09.020.

    Article  CAS  Google Scholar 

  12. Liu T Z, Chang M, Cheng X D, Zeng X, Shao H, and Liu F S, Surf Coat Technol 383 (2020) 125232. https://doi.org/10.1016/j.surfcoat.2019.125232.

    Article  CAS  Google Scholar 

  13. Kang X Y, Nan Y, He Y H, Zhang M M, Yan Y, and Liu Y, Ceram Int 47 (2021) 19934. https://doi.org/10.1016/j.ceramint.2021.03.328.

    Article  CAS  Google Scholar 

  14. KongW C, Li K M, and Hu J, Int J Hydrog Energy 47 (2022) 6911. https://doi.org/10.1016/j.ijhydene.2021.12.039

    Article  CAS  Google Scholar 

  15. Zhang M Y, Li M, Chi J, Wang S F, Yang S, Yang J, and Wei Y J, Surf Coat Technol 374 (2019) 645. https://doi.org/10.1016/j.surfcoat.2019.06.066.

    Article  CAS  Google Scholar 

  16. Liu J S, and Shi Y, Surf Coat Technol 412 (2021) 127044. https://doi.org/10.1016/j.surfcoat.2021.127044.

    Article  CAS  Google Scholar 

  17. Wang X, Rong J, Yao Y H, Zhang Y N, Zhong Y, Feng J, Yu X H, and Zhan Z L, J Alloys Compd 753 (2018) 688. https://doi.org/10.1016/j.jallcom.2018.04.269.

    Article  CAS  Google Scholar 

  18. So H, Yu D S, and Chuang C Y, Wear 253 (2002) 1004. https://doi.org/10.1016/S0043-1648(02)00230-2.

    Article  CAS  Google Scholar 

  19. Kong W C, Li K M, and Hu J, Opt Laser Technol, 142 (2021) 107214. https://doi.org/10.1016/j.optlastec.2021.107214.

    Article  CAS  Google Scholar 

  20. Huang C M, Zou B, Guo P, Liu Y N, Huang C Z, and Wang J, Int J Refract Met Hard Mater 59 (2016) 40. https://doi.org/10.1016/j.ijrmhm.2016.05.007.

    Article  CAS  Google Scholar 

  21. Zhou J L, and Kong D J, Surf Coat Technol 408 (2021) 126816. https://doi.org/10.1016/j.surfcoat.2020.126816.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong Dejun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yongfu, X., Dejun, K. Effect of La2O3 Addition on Microstructure and Tribological Performance of Laser Cladded Ni-WC Coating on S136 Steel. Trans Indian Inst Met 75, 1843–1852 (2022). https://doi.org/10.1007/s12666-022-02554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02554-0

Keywords

Navigation