Skip to main content
Log in

Effect of Powder Characteristic and Aging Treatment on the Corrosion Behavior of Selective Laser Melted Al-20Si Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Hypereutectic Al-20Si alloy is widely used in automotive, aerospace, and other fields because of its lightweight, high thermal conductivity, good wear, and corrosion resistance. In this study, the effects of powder characteristics and aging treatment on the corrosion behavior of Al-20Si alloy prepared by selective laser melting (SLM) were systematically investigated. The results showed that the Al-20Si alloy synthesized with ball-milled powders (BMPs) presents a large number of pores and coarse Si particles, while the Al-20Si alloy prepared with atomized powders (APs) shows a uniform and dense microstructure with relatively small grain sizes. The Si phase was continuously precipitated and coarsened with increased aging temperature. Moreover, the fibrous eutectic Si prepared with APs was transformed to a particulate shape. The alloy manufactured with APs shows excellent corrosion resistance. Meanwhile, with the increase of aging treatment temperature, the corrosion resistance of the alloy was significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aversa A, Lorusso M, Trevisan F, Ambrosio E P, Calignano F, Manfredi D, Biamino S, Fino P, Lombardi M and Pavese M, Met 7 (2017) 68.

    Google Scholar 

  2. Li X P, O’Donnell K M and Sercombe T B, Addit Manuf 10 (2016) 10.

    CAS  Google Scholar 

  3. Deirmina F and Pellizzari M, J Alloys Compd 709 (2017) 742.

    Article  CAS  Google Scholar 

  4. Liu Y J, Liu Z, Jiang Y, Wang G W, Yang Y and Zhang L C, J Alloys Compd 735 (2018) 1414.

    Article  CAS  Google Scholar 

  5. Gao P H, Li J P, Yang Z, Guo Y C and Wang Y R, Mater Sci Forum 765 (2013) 639.

    Article  CAS  Google Scholar 

  6. Revilla R I, Liang J, Godet S and De Graeve I, J Electrochem Soc 164 (2016) C27.

    Article  CAS  Google Scholar 

  7. Cabrini M, Lorenzi S, Pastore T, Pellegrini S, Pavese M, Fino P, Ambrosio E P, Calignano F and Manfredi D, Surf Interf Anal 48 (2016) 818.

    Article  CAS  Google Scholar 

  8. Han B, Chen Y B, Tao W, Li H and Li L Q, Mater Des 135 (2017) 353.

    Article  CAS  Google Scholar 

  9. Zhang Y, Guo Y Q, Chen Y, Cao Y B, Qi H B and Yang S P, Mater (Basel) 13 (2019) 126.

    Article  CAS  Google Scholar 

  10. Ma P, Wei Z J, Jia Y D, Zou C M, Scudino S, Prashanth K G, Yu Z S, Yang S L, Li C G and Eckert J, J Alloys Compd 688 (2016) 88.

    Article  CAS  Google Scholar 

  11. Acharya M and Mandal A, Met Mater Int 27 (2019) 1578.

    Article  CAS  Google Scholar 

  12. Ratnakumar K and Srinivasa Rao K, Trans Indian Inst Met 61 (2012) 283.

    Article  Google Scholar 

  13. Trueba M and Trasatti S P, Mater Chem Phys 121 (2010) 523.

    Article  CAS  Google Scholar 

  14. Kimura T and Nakamoto T, Mater Des 89 (2016) 1294.

    Article  CAS  Google Scholar 

  15. Rao H, Giet S, Yang K, Wu X H and Davies C H J, Mater Des 109 (2016) 334.

    Article  CAS  Google Scholar 

  16. Liu Y, Yang Y Q, Mai S Z, Wang D and Song C H, Mater Des 87 (2015) 797.

    Article  CAS  Google Scholar 

  17. Kang N, Coddet P, Chen C, Wang Y, Liao H L and Coddet C, Mater Des 99 (2016) 120.

    Article  CAS  Google Scholar 

  18. Yang Y, Chen Y, Zhang J X, Gu X H, Qin P, Dai N W, Li X P, Kruth J P and Zhang L C, Mater Des 146 (2018) 239.

    Article  CAS  Google Scholar 

  19. Zhang S K, Ma P, Jia Y D, Yu Z S, Sokkalingam R, Shi X R, Ji P C, Eckert J and Prashanth K G, Mater 12 (2019) 2126.

    Article  CAS  Google Scholar 

  20. Rathod H J, Nagaraju T, Prashanth K G and Ramamurty U, Tribol Int 137 (2019) 94.

    Article  CAS  Google Scholar 

  21. Li R D, Shi Y S, Wang Z G, Wang L, Liu J H and Jiang W, Appl Surf Sci 256 (2010) 4350.

    Article  CAS  Google Scholar 

  22. Chen Y M, Wang L Z, Feng Z X and Zhang W N, Prog Nat Sci 31 (2021) 714.

    Article  CAS  Google Scholar 

  23. Yaokawa J, Oh-ishi K, Dong S X, Hara M, Masutani T and Sato H, Mater Charact 182 (2021) 11533.

    Article  CAS  Google Scholar 

  24. Xu C L and Jiang Q C, Mater Sci Eng, A 437 (2006) 451.

    Article  CAS  Google Scholar 

  25. Flemings M C, Solidification Processing, McGraw-Hill, New York (1974) p 24.

    Google Scholar 

  26. Gremaud M, Allen D R, Rappaz M and Perepezko J H, Acta Mater 44 (1996) 2669.

    Article  CAS  Google Scholar 

  27. Pei Y T, Hosson J T M D, Acta Mater 48 (2000) 2617.

    Article  CAS  Google Scholar 

  28. Prashanth K G, Scudino S, Klauss H J, Surreddi K B, Löber L, Wang Z, Chaubey A K, Kühn U and Eckert J, Mater Sci Eng, A 590 (2014) 153.

    Article  CAS  Google Scholar 

  29. Cooke A and Slotwinski J A, Natl Inst Stand Technol IR 7873.

  30. Lumley R N, Fundamentals of Aluminium Metallurgy, Woodhead Publisher, England (2018) p 47.

    Google Scholar 

  31. Aboulkhair N T, Simonelli M, Parry L, Ashcroft I, Tuck C and Hague R, Prog Mater Sci 106 (2019) 100578.

    Article  CAS  Google Scholar 

  32. Kimura T, Nakamoto T, Mizuno M and Araki H, Mater Sci Eng, A 682 (2017) 593.

    Article  CAS  Google Scholar 

  33. Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K and Poprawe R, J Mater Process Technol 221 (2015) 112.

    Article  CAS  Google Scholar 

  34. Hanza S S, Vrsalović L, Štic L and Liverić L, Eng Rev 41 (2021) 1.

    Google Scholar 

  35. Ahlatci H, Mater Lett 62 (2008) 3490.

    Article  CAS  Google Scholar 

  36. Dai N W, Zhang L C, Zhang J X, Zhang X, Ni Q Z, Chen Y, Wu M L and Yang C, Corros Sci 111 (2016) 703.

    Article  CAS  Google Scholar 

  37. Jorcin J B, Orazem M E, Pébère N, and Tribollet B, Electrochim Acta 51 (2006) 1473.

    Article  CAS  Google Scholar 

  38. Wu J, Zhang S D, Sun W H, and Wang J Q, Surf Coat Technol 335 (2018) 205.

    Article  CAS  Google Scholar 

  39. Pang H T, Li X Q and Wang J R, Mater Prot 11 (2002) 38.

    Google Scholar 

  40. Santos E C, Shiomi M, Osakada K and Laoui T, Mach Tools Manuf 46 (2006) 1459.

    Article  Google Scholar 

  41. Laurino A, Andrieu E, Harouard J-P, Lacaze J, Lafont M-C, Odemer G and Blanc C, Electrochem Soc 160 (2013) C569.

    Article  CAS  Google Scholar 

  42. Liu W, Li M C, Luo Q, Fan H Q, Zhang J Y, Lu H S, Chou K C, Wang X L, and Li Q, Corros Sci 104 (2016) 217.

    Article  CAS  Google Scholar 

  43. Liao C M and Wei R P, Electrochim Acta 45 (1999) 881.

    Article  CAS  Google Scholar 

  44. Andreatta F, Terryn H and Wit J H W D, Corros Sci 45 (2003) 1733.

    Article  CAS  Google Scholar 

  45. Nesˇić S, Corros Sci 49 (2007) 4308.

    Article  CAS  Google Scholar 

  46. Sekhar A P, Mandal A B and Das D, J Mate Res Technol 9 (2020) 1005.

    Article  CAS  Google Scholar 

  47. Huang X, Yu L and Dong Y, Corros Sci 182 (2021) 109256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Zhang, Z., Ke, Y. et al. Effect of Powder Characteristic and Aging Treatment on the Corrosion Behavior of Selective Laser Melted Al-20Si Alloy. Trans Indian Inst Met 75, 2367–2377 (2022). https://doi.org/10.1007/s12666-022-02548-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02548-y

Keywords

Navigation