Skip to main content

Advertisement

Log in

Numerical Simulation and Experimental Investigation on Ti70 Titanium Alloy Electron-Beam-Welded Joint

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Electron beam welding combined with temperature field simulation has been carried out on the Ti70 titanium alloy, and the microstructural evolution and mechanical property of welded joint are systematically investigated. Results show that the simulated molten pool is well consistent with the experimental weld morphology. Microstructure analysis demonstrates that the upper part of fusion zone (FZ) consists of columnar crystals. The middle part of FZ is composed of equiaxed grains and β columnar crystals, and the fine martensite α′ presents the interlaced distribution within grains. The heat-affected zone is composed of transformed phase β structure (βt), martensite α′ and residual α phase. The microhardness in FZ is the highest. The maximum tensile strength of welded joint reaches 754.5 MPa, which is close to that of base metal. There are many equiaxed dimples on the joint fracture surface, and it dominantly presents the characteristic of ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan S K, Song G L, Li Z X, Wang H N, Zheng D J, Cao F Y, Horynova M, Dargusch M S, and Zhou L, J Mater Sci Technol 34 (2018) 421.

    Article  Google Scholar 

  2. Junaid M, Baig M N, Shamir M, Khan F N, Rehman K, and Haider J, J Mater Process Technol 242 (2017) 24.

    Article  CAS  Google Scholar 

  3. Junaid M, Khan F N, Bakhsh N, Baig M N, and Rahman K, Mater Des 139 (2018) 198.

    Article  CAS  Google Scholar 

  4. Wang S Q, Liu J H, and Chen D L, Mater Sci Eng A 584 (2018) 47.

    Article  Google Scholar 

  5. Wang S Q, Li W Y, Jing K, Zhang X Y, and Chen D L, Mater Sci Eng A 697 (2017) 224.

    Article  CAS  Google Scholar 

  6. Balasubramanian T S, Balakrishnan M, Balasubramanian V, and Muthu Manickam M A, Trans Nonferrous Met Soc China 21 (2011) 1253.

    Article  CAS  Google Scholar 

  7. Gao F Y, Gao Q, Jiang P, and Liao Z Q, Int J Light Mater Manuf 1 (2018) 265.

    Google Scholar 

  8. Kar J, Chakrabarti D, Roy S K, and Roy G G, J Mater Process Technol 266 (2019) 165.

    Article  CAS  Google Scholar 

  9. Wang S G, and Wu X Q, Mater Des 36 (2012) 663.

    Article  CAS  Google Scholar 

  10. Adamus K, Kucharczyk Z, Wojsyk K, and Krzysztof K, Comput Mater Sci 77 (2013) 286.

    Article  CAS  Google Scholar 

  11. Luo M, Hu R, Liu T, Wu B, and Pang S, Int J Heat Mass Transf 127 (2018) 1313.

    Article  Google Scholar 

  12. Gao F Y, Gao Q, Jiang P, Liu Z Y, and Liao Z Q, Vacuum 146 (2017) 136.

    Article  CAS  Google Scholar 

  13. Chowdhury S, Yadaiah N, Khan S M, Ozah R, Das B, and Muralidhar M, Mater Today Proc 5 (2018) 4811.

    CAS  Google Scholar 

  14. Chen Y, Wang S G, Wang Z Y, and Zhao L, Mater Res Express 5 (2018) 066537.

    Article  Google Scholar 

  15. Rai R, Burgardt P, Milewski J O, Lienert T J, and DebRoy T, J Phys D Appl Phys 42 (2009) 1.

    Article  Google Scholar 

  16. Ahmed T, and Rack H J, Mater Sci Eng A 243 (1998) 206.

    Article  Google Scholar 

  17. Lin Prakash P S, Rajak B, Panda S K, Roy G G, Jha M N, and Mascarenhas M, Mater Today Proc 2 (2017) 908.

    Google Scholar 

  18. Malinov S, Sha W, Guo Z, Tang C C, and Long A E, Mater Charact 48 (2001) 279.

    Article  Google Scholar 

  19. Hsieh C T, Shiue R K, Huang R T, and Tsay L W, Mater Sci Eng A 653 (2016) 139.

    Article  CAS  Google Scholar 

  20. Liu H, Nakata K, Yamamoto N, and Liao J, Sci Technol Weld Join 16 (2011) 581.

    Article  CAS  Google Scholar 

  21. Zeng L, and Bieler T R, Mater Sci Eng A 392 (2005) 403.

    Article  Google Scholar 

  22. Karpagaraj A, Sivashanmugam N, and Sankaranarayanasamy K, Mater Sci Eng A 640 (2015) 180.

    Article  CAS  Google Scholar 

  23. Wang G Q, Chen Z Y, Liu J W, Wang Q J, and Yang R, J Mater Sci Technol 34 (2018) 570.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the Foundation of College Innovation Center in NUAA (No. 2020CX00610) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaogang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, S. & Zhang, W. Numerical Simulation and Experimental Investigation on Ti70 Titanium Alloy Electron-Beam-Welded Joint. Trans Indian Inst Met 73, 2361–2369 (2020). https://doi.org/10.1007/s12666-020-02040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02040-5

Keywords

Navigation